

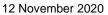
REPORT

Public Housing Renewal Project - Bills Street and Robinson Road, Hawthorn

Supplementary Geotechnical Investigation

Submitted to:

Hayball Pty Ltd Level 1, 250 Flinders Lane Melbourne VIC 3000


Submitted by:

Golder Associates Pty Ltd

Building 7, Botanicca Corporate Park, 570 - 588 Swan Street, Richmond, Victoria 3121, Australia

+61 3 8862 3500

20145767-022-R-Rev0

Distribution List

1 Copy - Golder Associates Pty Ltd

- 1 Copy Hayball Pty Ltd
- 1 Copy Ontoit Pty Ltd

Table of Contents

1.0	ENG	ENGAGEMENT								
2.0	SITE	CONDITIONS AND PROPOSED DEVELOPMENT	5							
3.0	PRE\	PREVIOUS GEOTECHNICAL INVESTIGATION								
4.0	AIMS	OF THE SUPPLEMENTARY GEOTECHNICAL INVESTIGATION	6							
5.0	FIEL	D INVESTIGATION AND LABORATORY TESTING	7							
	5.1	Field investigation	7							
	5.2	Laboratory testing	8							
6.0	RESU	JLTS OF THE INVESTIGATION	8							
	6.1	Geology	8							
	6.2	Subsurface conditions	9							
	6.3	Groundwater	11							
	6.4	Laboratory testing	12							
	6.5	Soil Reactivity	17							
	6.6	Preliminary drained geotechnical parameters	17							
7.0	F001	TINGS RECOMMENDATIONS	18							
	7.1	General	18							
	7.2	Piles	20							
	7.2.1	Design of Piles	20							
	7.2.2	CFA piles	21							
	7.2.3	Bored piles	22							
	7.2.4	Geotechnical construction issues for bored and CFA piles	25							
	7.2.5	Piling platform	26							
	7.3	Spread footings	26							
8.0	SITE	RETENTION	26							
	8.1	Retaining wall design pressures	27							
	8.1.1	Anchored or propped retaining walls	27							
	8.1.2	Cantilever retaining walls	28							
	8.1.3	Soldier pile spacing	29							
	8.1.4	Retaining walls constructed using temporary batter slopes	29							

10.0	IMPO	RTANT INFORMATION	34
9.0	EART	THQUAKE DESIGN	34
		Subgrade Design	
	8.6	Subgrade preparation procedures	32
	8.5	Reuse of excavated materials	32
	8.4	Temporary and permanent batter slopes	31
	8.3	Excavation characteristics	31
	8.2	Groundwater management	30
	8.1.5	Building core and lift overrun pits	30

TABLES

Table 1: Summary of depth ranges of subsurface units and sub-units (Boreholes GA20-BH-HAW-01 to HAW-12)

Table 2: Laboratory test results - soils

Table 3: Summary of laboratory test results - siltstone

Table 4: Preliminary drained geotechnical parameters

Table 5: Indicative typical axial working loads - CFA piles founding in Unit 2b weathered siltstone

Table 6: Indicative maximum ultimate unit stresses – bored piles eastern part of the greater site (Buildings A and G)

Table 7: Indicative maximum ultimate unit stresses – bored piles western part of the greater site (Buildings B, C, E and F)

Table 8: Target pile toe depth for bored piles

PLATES (within text)

Plate 1: Proposed site development (red) overlain on excerpt from 1:63:360 'Ringwood' geological mapsheet 9

FIGURES (at end of text)

- Figure 1: Geotechnical Investigation location plan
- Figure 2: Geotechnical Investigation location plan with proposed building development layout
- Figure 3: Rock moisture content vs elevation
- Figure 4: Rock uniaxial compressive strength vs elevation

APPENDICES

APPENDIX A Reports of Boreholes GA20-BH-HAW-01 to GA20-BH-HAW-12 Information Sheets

APPENDIX B Reports of Core Photographs

APPENDIX C Reports of Groundwater Wells Groundwater Well Licenses

APPENDIX D Laboratory Testing Reports

APPENDIX E Important Information

1.0 ENGAGEMENT

Hayball Pty Ltd (Hayball) on behalf of their client, the Department of Health and Human Services (DHHS), has engaged Golder Associates Pty Ltd (Golder) to undertake supplementary geotechnical and environmental investigations for the proposed redevelopment of the public housing estate at 1-7 Bills Street and 151-153 Robinson Road, Hawthorn (the site) as part of the proposed Public Housing Renewal Project.

The scope of services to be provided by Golder was outlined in our proposal dated 24 July 2020 (reference 20145767-005-P-Rev0). Acceptance of our proposal and instruction to proceed with the works was provided in an email dated 27 August 2020.

This report presents the results and findings of our supplementary geotechnical investigation together with design recommendations for the proposed development in general accordance with the aims of the investigation outlined in our proposal. The information and recommendations in this report supersede those provided in our letter dated 28 September 2020 (reference 20145767-016-L-Rev0) and our draft version of this report dated 22 October 2020 (reference: 20145767-022-R-RevA).

The results and findings of the supplementary environmental investigation are presented in a separate report dated 4 November 2020 (reference 20145767-014-R-Rev0).

2.0 SITE CONDITIONS AND PROPOSED DEVELOPMENT

The site of the proposed development is approximately rectangular in plan area and about 1.08 ha in size (maximum dimensions of about 100 m north-south by 110 m east-west). Bills Street extends through the centre of the site in an east-west direction. The site slopes down from about RL 21 m AHD in the north-east corner to about RL 11.3 m AHD in the south-west corner.

We have been provided with the following drawings and information:

- A feature survey plan produced by Reeds Consulting, dated 16 November 2016 (reference 21535 version C).
- Various Hayball architectural drawings, dated 15 July to 22 July 2020.
- Various emails (dated 11 September and 25 September 2020) from Ontoit Pty Ltd (Project Managers) regarding revisions to the Hayball drawings with respect to potential basement founding levels.

We understand that the proposed development is still in concept design stage but generally comprises the construction of six new buildings (labelled Buildings A to C across the southern part of the site and E to G across the northern part of the site), with surrounding courtyards, pavements and landscaped areas. Building A is proposed to have five levels plus one lower ground carpark level, Building B four levels plus two lower ground carpark levels, Building E three levels plus one lower ground carpark levels, Building E three levels plus one lower ground carpark levels and Building G six above ground levels plus two lower ground carpark levels and Building G.

There are also four stepped basement carparks (labelled P1 to P4) proposed, as follows:

P1 (located under Building A – south east part of the site): Lowest floor slab level of about RL 14.1 m AHD, with the potential for part of the basement to be deepened to about RL 12.6 m AHD over the northern part of P1. Based on the provided information we estimate a maximum retained height of about 3.5 m to 4.0 m over the northern part of the basement (if deepened) or about 2.0 m to 2.5 m if the basement is not deepened.

- P2 (located under Buildings B and C south-west part of the site): Lowest floor slab level of about RL 11.6 m AHD, with the potential for part of the basement to be deepened to about RL 11.1 m AHD. Based on the provided information we estimate a maximum retained height of about 3.5 m and up to 4.0 m if the basement is deepened.
- P3 (located under Buildings E, F and G north-west part of the site): Lowest floor slab level of about RL 14.0 m AHD. Based on the provided information we estimate a maximum retained height of about 3.0 m to 6.0 m over the north-western and north-eastern parts of the site respectively.
- P4 (located under Building G and comprises a small section of the building footprint to the east of the P3 basement): Lowest floor slab level of about RL 17.1 m AHD. Based on provided information we estimate a maximum retained height up to about 3.0 m.

Whilst not specifically shown on the plans provided, localised deeper excavations for lift overruns / building core are expected to also be required.

Based on our experience we have assumed design maximum column working loads in the order of 3 MN to 5 MN for the development buildings. The design column loads should be confirmed by the project structural engineer.

3.0 PREVIOUS GEOTECHNICAL INVESTIGATION

Golder has been provided with a geotechnical investigation report for the site prepared by Intrax Pty Ltd (Intrax), dated 30 January 2017 (reference: 88797).

The geotechnical investigation completed by Intrax included eleven shallow augered boreholes (BH1 to BH11) drilled to nominal depth of 2 m to 3 m spread across the majority of the site and three augered boreholes in the south east of the site drilled to a depth of 9 m. No in situ testing or standard penetration test (SPT) samples were undertaken in boreholes in soils and no core samples were recovered from weathered rock. We consider that the findings of this Intrax investigation are of limited value given the nature of the proposed development (buildings between three and six above ground levels) and the nature of the design advice provided in the report.

4.0 AIMS OF THE SUPPLEMENTARY GEOTECHNICAL INVESTIGATION

The Department of Health and Human Services (DHHS) has advised that the main objective of the supplementary investigation is to provide additional geotechnical and environmental information to inform preliminary design and to reduce the potential exclusions and assumptions in costings to be developed by tenderers bidding for the design and construction Contracts for the proposed developments.

From a geotechnical perspective the objective is to characterise the ground conditions at the site and provide recommendations on footing options, retention systems, excavation conditions, groundwater management and earthquake risk. In order to provide the information required, we developed aims of the investigation as follows:

- Assess the subsurface conditions at the site relevant to the proposed development, including the presence and depth of fill, and depth to groundwater, if encountered.
- Provide recommendations on suitable footing systems for the proposed development including allowable bearing pressures for spread footings (if applicable) and design parameters for piled footings.

- Provide estimates of total and differential settlements for likely footing alternatives.
- Assess the site soil reactivity, characteristic surface movement and site classification in accordance with AS2870 – Residential Slabs and Footings.
- Provide recommendations on retention options for the basement and localised subsurface structures such as core and lift overruns including design earth pressures to be adopted in retaining wall design.
- Provide recommendations on groundwater management for both the temporary and permanent conditions.
- Comment on the likely excavation characteristics of materials over the depth of the proposed excavations.
- Provide advice for the excavation and stability of temporary and permanent batter slopes.
- Provide recommendations on subgrade preparation procedures for pavements and the lowest floor slab of the new buildings, including recommendations on the placement of engineered fill, if required and subsurface drainage requirements.
- Assess a design subgrade California bearing ratio (CBR) value for use in pavement design (for areas surrounding the proposed new buildings).
- Evaluate the earthquake risk classification for the site in accordance with AS1170.4 (2007).

5.0 FIELD INVESTIGATION AND LABORATORY TESTING

5.1 Field investigation

The field component of the investigation comprised the drilling of twelve boreholes (Boreholes GA20-BH-HAW-01 to GA20-BH-HAW-12) to depths of between about 14.2 m and 17.2 m and the excavation of ten test pits (GA20-TP-HAW-01 to GA20-TP-HAW-10) to depths of 0.8 m to 2.2 m. The locations of the Golder boreholes and test pits were measured by a Golder engineer using a Trimble differential GPS system (DGPS), accurate to 0.1 m, and are shown on Figure 1 and Figure 2. The ground surface elevation at the borehole locations range from RL 11.5 m AHD (GA20-BH-HAW-10) in the south west of the site to RL 19.8 m AHD (GA20-BH-HAW-03) in the north east of the site.

Prior to the drilling of boreholes Dial Before You Dig (DBYD) service plans were collated for the site. The site was then visited by an engineer from Golder and an underground service locator on 28 August 2020 to investigate the presence of underground services in the vicinity of each of the proposed test locations.

The investigation was undertaken between 31 August and 24 September 2020. The boreholes were advanced in fill and natural soils using solid flight auger and wash bore drilling techniques and NMLC sized diamond coring in weathered rock and some residual soils.

Standard penetration tests (SPTs) or undisturbed tube samples (U63) were undertaken at regular intervals in the boreholes in soils for sample recovery and visual and strength assessment and laboratory testing purposes. Continuous rock core samples were taken from the weathered rock for logging, strength assessment and laboratory testing. The test pits were excavated using an excavator and were undertaken primarily for environmental purposes, as such they are not referred to further in this report.

Groundwater monitoring wells were installed in Boreholes GA20-BH-HAW-01, GA20-BH-HAW-03, GA20-BH-HAW-05, GA20-BH-HAW-09, GA20-BH-HAW-10 and GA20-BH-HAW-12 on the completion of drilling. Following drilling and well installation, the wells were developed (water was removed to allow the inflow of

groundwater and hence reduce potential for water used during the drilling process to affect the measured groundwater level at the site).

A geotechnical engineer from Golder was present on site throughout the investigation and located the boreholes, described the subsurface conditions encountered, performed in situ testing, recovered samples of soil and rock and photographed the core samples recovered.

The results of the investigation are presented in Appendix A as Reports of Boreholes GA20-BH-HAW-01 to GA20-BH-HAW-12. Also presented in Appendix A are the following information sheets relevant to the interpretation of the reports of boreholes:

- Explanation of notes, abbreviations and terms used on borehole and test pit reports
- Method of soil description used on borehole and test pit reports
- Terms for rock material strength and weathering abbreviations for defect descriptions.

Photographs of the core samples recovered from the borehole are presented in Appendix B. Reports of groundwater well installations and the bore construction licences are presented in Appendix C.

In this report the term siltstone is used as a generic term for the weathered rock encountered during the investigation and includes both siltstone and sandstone. Refer to the Reports of Boreholes in Appendix A for differentiation between the two materials.

5.2 Laboratory testing

Laboratory testing was undertaken on representative samples of soil and rock to assist in classification of the materials encountered in the boreholes. The laboratory testing on soil samples comprised natural moisture content, Atterberg Limit, linear shrinkage, particle size distribution, permeability and shrink swell index tests.

Laboratory testing of rock samples comprised moisture content and strength testing (Uniaxial Compressive Strength (UCS) and point load strength index (PLSI)).

The results of laboratory testing is summarised and discussed in Section 6.4 of this report and the laboratory test reports are presented in Appendix D.

6.0 RESULTS OF THE INVESTIGATION

6.1 Geology

The Geological Survey of Victoria 1:63 360 'Ringwood' mapsheet indicates that the site is underlain by Melbourne Formation but the mapped boundary between Melbourne Formation siltstone and Anderson Creek Formation siltstone is close to the site. A layer of fill is also expected from the ground surface and there is likely to be some residual soil overlying the siltstone.

Plate 1 shows the location of the proposed site development superimposed on the 'Ringwood' geological mapsheet.

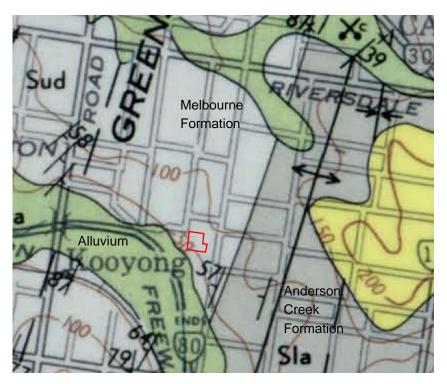


Plate 1: Proposed site development (red) overlain on excerpt from 1:63:360 'Ringwood' geological mapsheet

6.2 Subsurface conditions

A description of the main subsurface units encountered during the geotechnical investigation is presented below and in Table 1. In this section and in Table 1 all depths quoted are below the ground surface level at the time of the investigation.

Site plans with the approximate locations of the boreholes and test pits (undertaken for contamination assessment purposes) are attached (refer Figure 1 and Figure 2). Figure 1 shows an aerial image with the investigation locations overlain and Figure 2 shows the proposed building development layout with investigation locations overlain.

In summary, a layer of surficial fill (Unit 1) was encountered across the site, extending to depths of between about 0.2 m and 4.0 m, underlain by residual siltstone (Unit 2a) grading to weathered siltstone rock (Unit 2b). In the east of the site (at Buildings A and G), relatively weak and deeply weathered, faulted brecciated siltstone to significant depth is present. Further details of these units are provided below.

Based on our visual and tactile assessments of the weathered siltstone we consider that the siltstone material is likely to be part of the Anderson Creek Formation rather than Melbourne Formation as indicated by the 'Ringwood' geological mapsheet in Plate 1.

Unit 1: Fill

Fill was encountered from the ground surface in all borehole locations. The fill thickness in boreholes ranged from 0.2 m (at GA20-BH-HAW-07) to 4.0 m (at GA20-BH-HAW-12). The fill materials generally comprised clay, gravelly and sandy clay, clayey sand. In some locations the fill materials had inclusions of glass, brick, wood, plastic and metal fragments. Given the composition of the fill we infer it to be uncontrolled.

Unit 2: Anderson Creek Formation (weathered siltstone)

In all boreholes the Unit 1 Fill was underlain by a layer of typically stiff or very stiff clay inferred to be residual siltstone (i.e derived from the complete weathering of the underlying rock) comprising clay, sandy and gravelly clay and clayey sand. The residual siltstone graded to weathered siltstone at depths of between about 2 m to 8 m below the existing ground surface level. There was a relatively deep siltstone weathering profile observed in a number of boreholes. The siltstone material in Boreholes GA20-BH-HAW-03, GA20-BH-HAW-06, GA20-BH-HAW-09 and GA20-BH-HAW-12 to the east of the site is inferred to be associated with a fault trending approximately north-south through the eastern part of the site. The siltstone material in Boreholes GA20-BH-HAW-12 encountered deeply weathered and broken rock, referred to commonly as breccia, which is the product of ancient faulting within the siltstone formation. The brecciated siltstone was predominantly encountered as angular clasts within a weathered clay / extremely weathered siltstone matrix.

In Boreholes to the west of the site, predominantly highly or less weathered siltstone was typically encountered at depths of 4 m to 8 m below the ground surface level.

Whilst not observed, it is common for weathered siltstone around Melbourne to be intruded with dyke material, particularly where faulted rock masses are present. Where encountered the dyke can often be of a weaker strength than the surrounding host rock, and the orientation, depth and lateral extent of dykes can vary considerably with depth and distance across a site. There is potential for dyke material to be present and to be encountered during piling works.

Description		Depth ranges	of subsurface	units and sul	b-units (m)	
	GA20-BH-HAW-01 RL 16.9 m AHD	GA20-BH-HAW-02 RL 17.3 m AHD	GA20-BH-HAW-03 RL 19.8 m AHD	GA20-BH-HAW-04 RL 14.2 m AHD	GA20-BH-HAW-05 RL 15.0 m AHD	GA20-BH-HAW-06 RL 17.0 m AHD
Unit 1 - Fill	0.0 – 1.0	0.0 – 0.3	0.0 – 0.4	0.0 – 1.0	0 – 1.5	0.0 – 0.3
Unit 2a – Residual Siltstone (clay, sandy and gravelly clay, clayey sand)	1.0 – 5.4	0.3 - 2.8	0.4 – 2.0	1.0 – 4.5	1.5 – 4.0	0.3 – 3.0
Unit 2b – Anderson Creek Formation (Siltstone)	5.4 – 14.6	2.8 – 14.9	2.0 – 15.5	4.5 – 15.4	4.0 – 15.5	3.0 – 13.6
XW or XW-HW Siltstone	-	2.8 - 3.6	2.0 - 15.5*	4.5 - 4.6	4.0 - 8.0*	3.0-7.8*; 11.3-13.6*
HW or HW-MW Siltstone	5.4–8.5; 10.0-12.6	3.6 - 7.0	-	4.6 - 6.5	8.0 - 15.5	7.8 – 11.3
MW or less weathered Siltstone	8.5-10.0; 12.6-14.6	7.0 – 14.9	-	6.5 – 15.4	-	-
End Borehole	14.6	14.9	15.5	15.4	15.5	13.6

Table 1: Summary of depth ranges of subsurface units and sub-units (Boreholes GA20-BH-HAW-01 to HAW-12)

Description	Depth ranges of subsurface units and sub-units							
	GA20-BH-HAW-07 RL 12.4 m AHD	GA20-BH-HAW-08 RL 14.1 m AHD	GA20-BH-HAW-09 RL 16.0 m AHD	GA20-BH-HAW-10 RL 11.5 m AHD	GA20-BH-HAW-11 RL 12.5 m AHD	GA20-BH-HAW-12 RL 15.9 m AHD		
Unit 1 - Fill	0.0 – 0.2	0.0 – 0.9	0.0 – 0.8	0.0 - 2.8	0.0 - 2.0	0.0 – 3.8		
Unit 2a – Residual Siltstone (clay, sandy and gravelly clay, clayey sand)	0.2 - 4.3	0.9 - 3.8	0.8 - 7.0	2.8 - 6.0	-	3.8 - 8.0		
Unit 2b – Anderson Creek Formation (Siltstone)	4.3 – 14.7	3.8 – 14.2	7.0 – 16.9	6.0 – 14.5	2.0 – 14.5	8.0 – 17.2		
XW or XW-HW Siltstone	4.3 - 5.4	3.8-6.0	7.0 – 16.9*	6.0 - 6.2	2.0 - 4.2	8.0-9.0*; 10.1-16.5*		
HW or HW-MW Siltstone	5.4 - 11.2	6.0 - 10.0	-	6.2 - 8.5	4.2 – 11.5	9.0-10.1; 16.5-17.2		
MW or less weathered Siltstone	11.2 – 14.7	10.0 - 14.2	-	8.5 - 14.5	11.5– 14.5	-		
End Borehole	14.7	14.2	16.9	14.5	14.5	17.2		

Notes: The approximate surface elevation (m AHD) at the borehole locations was measured using a differential GPS (dGPS).

RL = reduced level, XW = extremely weathered, HW = highly weathered, MW = moderately weathered.

*brecciated siltstone, comprises predominantly highly fractured and sheared extremely to highly weathered siltstone with lenses of highly to moderately weathered rock.

6.3 Groundwater

The depth to groundwater was measured at between about 4.3 m and 9.0 m below the current ground surface level in the standpipes installed as part of the investigation.

Groundwater monitoring wells were installed in Boreholes GA20-BH-HAW-01, GA20-BH-HAW-03, GA20-BH-HAW-05, GA20-BH-HAW-09, GA20-BH-HAW-10 and GA20-BH-HAW-12 on the completion of drilling. The wells were developed following installation to remove any remnant drilling fluid and to allow the groundwater to return to its equilibrium or standing level.

The depth to groundwater (as measured on 1 October 2020) and level of the groundwater measured in the boreholes were as follows:

- Borehole GA20-BH-HAW-01 well installation to 10.0 m below ground surface level depth to groundwater 9.0 m (RL 7.9 m AHD)
- Borehole GA20-BH-HAW-03 well installation to 12.0 m below ground surface level depth to groundwater 8.4 m (RL 11.4 m AHD)

- Borehole GA20-BH-HAW-05 well installation to 10.0 m below ground surface level depth to groundwater 8.2 m (RL 6.8 m AHD)
- Borehole GA20-BH-HAW-09 well installation to 10.0 m below ground surface level depth to groundwater 5.2 m (RL 10.8 m AHD)
- Borehole GA20-BH-HAW-10 well installation to 10.0 m below ground surface level depth to groundwater 5.1 m (RL 6.4 m AHD)
- Borehole GA20-BH-HAW-12 well installation to 10.0 m below ground surface level depth to groundwater 4.3 m (RL 11.6 m AHD)

Measured groundwater levels were relatively higher in boreholes in the east of the site at elevations ranging between RL 10.8 m AHD and RL 11.6 m AHD (in Boreholes GA20-BH-HAW-03, GA20-BH-HAW-09, GA20-BH-HAW-12) compared to groundwater levels measured in boreholes in the western part of the site at elevations ranging between RL 6.4 m AHD and 7.9 m AHD (in Boreholes GA20-BH-HAW-01, GA20-BH-HAW-05, GA20-BH-HAW-10).

Design groundwater levels for the site should take account of natural fluctuations of the groundwater level and the potential for localised rises in groundwater level, for example due to leaky water mains or drainage.

6.4 Laboratory testing

The laboratory testing comprised moisture content, Atterberg Limits, linear shrinkage and shrink swell index testing on recovered soil samples and moisture content, PLSI and UCS testing on representative samples of the weathered siltstone core. Samples of weathered siltstone were submerged in water following sampling for a minimum of 24 hours prior to testing.

Laboratory test reports are presented in Appendix D and the results of the laboratory testing are summarised in Table 2 and Table 3.

The results of the rock moisture content testing and UCS testing are plotted graphically against elevation in Figure 3 and Figure 4 respectively.

			At	terberg Lin	nits	Linear Shrinkage		PSD		Shrink Swell	Permeability (m/s)
Borehole	Depth (m)	МС (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	(%)	% Fines	% Sand	% Gravel	Index (%)	(
GA20-BH- HAW-01	2.9 – 3.3	13.8	32	14	18	7.5	-	-	-	-	-

Table 2: Laboratory test results - soils

			At	terberg Lin	nits	Linear Shrinkage		PSD		Shrink Swell	Permeability (m/s)
Borehole	Depth (m)	МС (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	(%)	% Fines	% Sand	% Gravel	Index (%)	(11/5)
GA20-BH- THW-04	1.5 – 1.9	24.5	41	15	26	11.5	-	-	-	2.8	-
GA20-BH- THW-05	2.5 - 3.0	18.2	52	19	33	10.0	-	-	-	-	-
GA20-BH- THW-06	1.5 - 2.0	23.1	55	22	33	10.5	-	-	-	-	-
GA20-BH- THW-07	1.5 – 1.9	18.8	50	16	34	7.5	-	-	-	2.2	-
GA20-BH- THW-12	4.0 - 4.4	13.9	17	13	4	2.5	58.2	41.6	0.3	-	2x10 ⁻⁹

MC = *moisture content; PSD* = *Particle size distribution (by sieve)*

Table 3: Summary of laboratory test results - siltstone

Borehole	Sample depth^ (m)	Material description	Moisture content (%)	Point Load Strength Index I _{S(50)} (MPa) - Diametral	UCS (MPa)
	5.8	Siltstone	6.8	-	-
	6.9	Siltstone	7.1	-	7.4
	8.4	Siltstone	11.3	-	-
	9.5	Siltstone	7.6	-	7.6
GA20-BH-HAW-01	10.8	Siltstone	8.5	-	-
	12.4	Siltstone	5.8	-	-
	13.1	Siltstone	8.4	-	3.5
	14.5	Siltstone	5.5	-	-
	3.9	Siltstone	9.8	-	-
	4.3	Siltstone	9.4	-	2.3
	5.9	Siltstone	9.6	-	-
GA20-BH-HAW-02	6.7	Siltstone	9.2	-	5.2
	7.3	Siltstone	8.5	-	-
	8.3	Siltstone	7.7	-	-
	10.4	Siltstone	7.4	-	11

Borehole	Sample depth^ (m)	Material description	Moisture content (%)	Point Load Strength Index I _{S(50)} (MPa) - Diametral	UCS (MPa)
	11.3	Siltstone	7.6	-	-
	13.4	Siltstone	7.4	-	-
	14.7	Siltstone	6.9	-	-
	4.8	Siltstone	10.8	-	-
	5.4	Siltstone	8.9	0.15	-
	6.5	Siltstone	9.5	-	-
	8.0	Siltstone	11.2	0.05	-
	9.9	Siltstone	12.8	-	-
GA20-BH-HAW-03	10.9	Siltstone	14.9	-	-
	11.2	Siltstone	13.4	-	-
	12.8	Siltstone	13.6	-	-
	13.9	Siltstone	12.7	-	-
	14.2	Siltstone	11.4	-	-
	15.2	Siltstone	13.7	-	-
	4.7	Siltstone	10.6	-	-
	5.8	Siltstone	6.9	-	-
	6.1	Siltstone	5.9	-	7.8
	7.8	Siltstone	6.3	-	-
GA20-BH-HAW-04	8.7	Siltstone	6.3	-	-
	9.8	Siltstone	6.1	-	7.3
	11.9	Siltstone	6.7	-	-
	13.4	Siltstone	6.6	-	-
	15.3	Siltstone	6.2	-	-
	6.0	Siltstone	5.7	-	-
	7.1	Siltstone	4.4	-	-
GA20-BH-HAW-05	8.3	Siltstone	11.2	-	-
	9.9	Siltstone	11.1	0.09	-

Borehole	Sample depth^ (m)	Material description	Moisture content (%)	Point Load Strength Index Is ₍₅₀₎ (MPa) - Diametral	UCS (MPa)
	10.3	Siltstone	12.2	0.07	-
	11.1	Siltstone	10.1	-	-
	12.1	Siltstone	9.4	-	-
	13.5	Siltstone	8.5	-	1.3*
	14.9	Siltstone	7.8	-	-
	6.8	Siltstone	11.1	0.14	-
	7.9	Siltstone	9.9	-	-
	8.1	Siltstone	10.1	0.42	-
GA20-BH-HAW-06	9.2	Siltstone	6.5	-	-
	10.4	Siltstone	8.0	-	1.6
	12.3	Siltstone	4.4	-	-
	13.3	Siltstone	5.0	-	-
	5.8	Siltstone	9.7	-	-
	6.7	Siltstone	9.7	-	3.7
	7.8	Siltstone	7.4	-	-
	8.1	Siltstone	8.5	-	4.3
GA20-BH-HAW-07	10.2	Siltstone	10.8	-	-
	11.3	Siltstone	7.2	-	-
	12.1	Siltstone	8.8	-	-
	13.2	Siltstone	4.2	-	-
	14.6	Siltstone	4.5	-	-
	7.3	Siltstone	7.3	-	3.1
	9.2	Siltstone	6.8	-	-
GA20-BH-HAW-08	10.2	Siltstone	6.3	-	8.3
	11.8	Siltstone	5.7	-	-
	13.1	Siltstone	6.8	-	5.8
GA20-BH-HAW-09	11.9	Siltstone	5.3	-	-

Borehole	Sample depth^ (m)	Material description	Moisture content (%)	Point Load Strength Index I _{S(50)} (MPa) - Diametral	UCS (MPa)
	12.2	Siltstone	8.0	-	-
	13.1	Siltstone	5.5	-	-
	15.8	Siltstone	8.8	-	-
	6.4	Siltstone	8.1	-	6.1
	7.8	Siltstone	7.8	-	-
	9.1	Siltstone	7.3	-	-
GA20-BH-HAW-10	11.8	Siltstone	7.5	-	-
	12.3	Siltstone	7.4	-	4.0
	13.9	Siltstone	6.6	-	-
	3.1	Siltstone	8.8	0.5	-
	4.2	Siltstone	10.0	-	-
	5.9	Siltstone	11.7	-	-
	6.7	Siltstone	20.6	-	-
GA20-BH-HAW-11	7.3	Siltstone	10.2	-	3.9
	8.1	Siltstone	9.6	-	-
	10.0	Siltstone	12.9	-	-
	11.9	Siltstone	8.8	-	-
	13.6	Siltstone	7.2	-	-
	8.2	Siltstone	7.1	-	-
	9.7	Siltstone	3.5	0.27	-
	10.3	Siltstone	6.9	-	-
GA20-BH-HAW-12	12.8	Siltstone	8.5	-	-
	13.9	Siltstone	9.1	-	-
	14.9	Siltstone	10.5	0.25	-
	17.0	Siltstone	8.4	0.23	-

^Sample depth refers to approximate depth of midpoint of the sample tested rounded to one decimal place. *Failure along pre-existing plane of weakness

The results of UCS testing completed as part of the geotechnical investigation range from 1.3 MPa to 11 MPa with an average of 5.2 MPa (18 samples total), and results of point load strength index tests ($I_{s(50)}$) range from 0.05 MPa to 0.5 MPa with an average of 0.2 MPa (10 samples total).

The laboratory tests are generally consistent with our visual and tactile assessment of the rock strength typically ranging from very low to medium strength in the west of the site and very low to low strength in the east of the site.

The results of rock moisture content tests are often used as a classification test for weathered siltstone in Melbourne and there are published correlations between moisture content and strength and moisture content and modulus. Higher moisture contents are generally correlated to more weathered and weaker siltstone and lower moisture contents are generally correlated to less weathered and stronger siltstone. Figure 3 shows that siltstone moisture contents have some scatter in boreholes drilled in the west of the site but there is a general trend of decreasing moisture content with increase in depth in boreholes, while boreholes drilled on the east of the site show significant scatter in moisture contents with depth, which is likely to be attributed to faulted/brecciated siltstone encountered on the eastern side of the site.

6.5 Soil Reactivity

AS 2870-2011 provides guidance for the design of residential slabs and footing with respect to reactive soil ground movement associated with seasonal moisture change of the founding soils.

The type of proposed building development does not strictly conform to the requirements for standard footing designs described by AS 2870-2011 (section 3.1.1) and therefore this section is given as a guide only with respect to potential seasonal ground surface movement (y_s) range. Structures at this site should be designed based on engineering principals, taking into consideration soil reactivity considerations and the sub-surface (founding) conditions at the site.

Based on the results of laboratory testing we consider the Unit 2a soils are typically moderately to highly reactive, with shrink swell index results ranging from 2.2% to 2.8% (average 2.5%), liquid limit test results ranging from 17% to 55% (average 41%), and linear shrinkage test results ranging from 2.5% to 11.5% (average 8.3%), we estimate the potential shrink / swell movement of a footing founding at a depth of at least 1 m could be up to about 15 mm.

As a guide to possible reactive soil movement contribution for slabs on ground, we consider the existing natural (Unit 2a) clay to be highly reactive with respect to seasonal surface movement. This would correlate to a characteristic surface movement range of up to about 60 mm based on a site classification of H1 using AS 2870-2011.

For deep piled footing systems reactive soil movements can generally be ignored.

6.6 Preliminary drained geotechnical parameters

Table 4 provides preliminary drained geotechnical parameters. Caution should be used in adopting generic parameters for design. There are risks associated with misinterpreting a single set of parameters or the parameters being used for circumstances or design cases for which they were not intended. The parameters required for a soil-structure interaction analysis will depend on the method of analysis and constitutive soil model adopted by the designer (i.e. different parameters for the soil would apply depending on the type of modelling adopted).

Table 4: Preliminary drained geotechnical parameters

Unit	c' (kPa)	φ' (kPa)	E' (MPa)
Unit 1 - Fill	NA	NA	NA
Unit 2a – Residual Clay	5	25	30
Unit 2b – Anderson Creek Formation (Siltstone) XW or less weathered	50	30	100

Notes: c' = Effective cohesion; ϕ' = Effective Friction Angle; E' = Drained Young's Modulus; XW = extremely weathered; HW = highly weathered; NA = not applicable

7.0 FOOTINGS RECOMMENDATIONS

7.1 General

The results of the investigation indicate variable founding conditions across the development site. Across the south of the site relatively deep uncontrolled fill is present and we consider the fill is not a suitable founding stratum for footings. Over the eastern part of the site (comprising Buildings A and G), relatively weak and deeply weathered, faulted brecciated siltstone to significant depth is present.

A summary of expected founding conditions at the lowest floor slab level for each building and recommended footing options are as follows:

- Building A / P1 basement (lowest floor slab RL 14.1 m AHD): Based on boreholes drilled across this part of the site we expect founding conditions beneath the lowest basement floor slab to comprise either Unit 1 fill or Unit 2a residual clay. We expect the depth to the Unit 2b weathered siltstone to be greater than about 2 m below the underside of the lowest floor slab level and comprise predominantly brecciated siltstone associated with the fault over the eastern part of the site. We consider that piled footings would be required for this building other than for relatively lightly loaded columns (say working loads less than 1 MN) founding in the Unit 2a residual clay.
- Buildings B and C / P2 basement (lowest floor slab RL 11.6 m AHD). Based on boreholes drilled across this part of the site we expect founding conditions to comprise either Unit 1 fill or Unit 2a residual clay, with predominantly non-brecciated weathered siltstone at depth. The depth to weathered siltstone is expected to be greater than about 1 m below the underside of the lowest floor slab and we consider that that piled footings would be required for this building other than for relatively lightly loaded columns (say working loads less than 1 MN) founding in the Unit 2a residual clay.
- Buildings E and F / western part of P3 basement (lowest floor slab RL 14.0 m AHD). Based on boreholes drilled across this part of the site we expect founding conditions to comprise a combination of Unit 1 fill (where the proposed basement floor slab is close to the existing surface level), Unit 2a residual clay and potentially some minor areas of weathered siltstone. Three of the four boreholes drilled across this part of the site indicate weathered siltstone is likely to be encountered greater than 2 m below the underside of the lowest floor slab and at this concept stage we recommend that piled footings are adopted for this building, other than for relatively lightly loaded columns (say working loads less than 1 MN) founding in the Unit 2a residual clay.

Building G / P4 basement (lowest floor slab RL 17.1 m AHD) and eastern part of P3 basement (lowest floor slab RL 14.0 m AHD). Based on boreholes drilled across this part of the site we expect founding conditions at P4 basement level to comprise either Unit 1 fill or Unit 2a residual clay and at P3 basement level either Unit 2a residual clay (western part of the footprint) or Unit 2b weathered siltstone (eastern part of the footprint). We expect the weathered siltstone to comprise predominantly brecciated siltstone associated with the fault over the eastern part of the greater site.

Whilst shallow pad footings founding in the weathered siltstone could be adopted over the eastern part of Building G, it is difficult to accurately delineate the extent of the area that pad footings could be adopted given the relatively deep weathering zone encountered in the weathered siltstone and potential to encounter Unit 2a residual clay over the western part of the building footprint. Given this, we recommend that piled footings are adopted for this building, other than for relatively lightly loaded columns (say working loads less than 1 MN) founding in the Unit 2a residual clay.

The Anderson Creek Formation material is expected to be a suitable founding material for piles supporting the proposed development. The engineering properties of the siltstone are dependent on the degree and process of the weathering, with strength and stiffness typically increasing with depth as the degree of weathering decreases. Where the fault is present, we expect relatively weak, fractured siltstone to be present to depth. Suitable piling options at this site could include bored piles or continuous flight auger (CFA) piles (provided that a minimum pile length below the lowest basement founding level can be installed). Bored piles have the advantage of being able to be reinforced over their full depth, the design can be altered based on the ground conditions encountered and there is less potential for structural issues with the piles based on construction methodology.

If dyke or dyke affected materials of significantly lower strength than the host rock (siltstone or sandstone) are encountered in pile sockets it will be necessary for pile sockets to be lengthened or otherwise redesigned. For CFA piles it is impractical to observe the socket materials until the auger is withdrawn, and it is important that where there is a risk of encountering dyke materials, CFA piles are drilled to refusal of the auger (which is unlikely to occur if the tip of the auger is within weathered dyke materials), rather than to pre-determined target depths. Dyke materials stronger than the host rock could also be encountered at this site which may limit the socket length able to be achieved by CFA piles before refusal of the auger occurs.

If CFA piles are adopted, we recommend that the pile is drilled to a depth such that the length of pile from cutoff level is at least 6D (where D is the pile diameter) so that the footing acts as a pile. Where this requirement cannot be achieved with a CFA pile it may be necessary to construct a bored pile that is socketed into the weathered siltstone. The following sections of the report provide further comments and recommendations with respect to the design and construction of bored and CFA piles.

As noted above, it may be possible to support less heavily loaded elements on shallow spread footings founding below the fill within the Unit 2a residual clay or underlying weathered siltstone. However, care would be required if it is proposed to use a mix of spread footings and piles as significant differential settlements could occur between the different footing types.

Piles could either be installed from the ground surface prior to levelling and basement excavation works or post levelling and excavation work. The following should be considered in assessing the staging of the piling works:

- The costs associated with any pile length that will be removed during or following excavation.
- Access restrictions for piling plant.
- The requirement to construct a satisfactory working platform for the piling plant.

The following sections of the report provides further comments and recommendations with respect to the design and construction of CFA and bored piles and spread footings.

7.2 Piles

7.2.1 Design of Piles

The design of piled footings to resist applied loads should be in accordance with the Australian Standard for Piling - Design and installation (AS2159 - 2009). AS 2159 – 2009 requires a pile to be proportioned such that the design geotechnical strength ($R_{d,g}$) is not less than the design action effect (E_d). The design geotechnical strength is calculated as the design ultimate geotechnical strength ($R_{d,ug}$) multiplied by a geotechnical strength reduction factor (ϕ_g).

The value of the geotechnical strength reduction factor is influenced by the following factors,

- φ_{gb} basic geotechnical strength reduction factor, which is in turn influenced by an assessment of various risk factors relating to the site, design methodology and the method of pile installation.
- ϕ_{tf} intrinsic test factor based on the type of pile testing to be undertaken.
- K testing benefit factor dependent on the percentage of piles to be tested.

The assessment of individual risk ratings for risk factors as set out in Table 4.3.2 (A) of AS 2159 - 2009 will need to be undertaken by the designer of the piled footings. However, to assist in a preliminary assessment of piled footings for documentation purposes we have made an assessment of the average risk rating based on the following factors and assumptions:

- The level and quality of the geotechnical investigation undertaken to date including laboratory testing of the weathered siltstone.
- The variability in ground conditions, in particular the presence of relatively deep fault zones encountered across the eastern part of the site.
- Our experience in the design of CFA and bored piles founding in weathered siltstone. CFA piles will be up to 1050 mm in diameter (given the limited experience with 1200 mm diameter CFA piles we consider a higher risk rating may apply).
- A competent and experienced piling contractor installs the piles.
- The bored pile footing scheme is low redundancy with predominantly either a single pile or two pile group beneath each column. We also consider a CFA scheme with clusters of piles beneath a column should be treated as low redundancy. In the situation where an unknown geological feature, such as a dyke, is present beneath the base of a pile within a cluster of piles we consider the cluster would behave in a similar manner to a larger individual pile. Hence, if clusters of CFA piles are documented they should be regarded as a low redundancy system.

Based on our assessment of the above factors and the assumptions listed we have assessed the average risk rating for the design of the piles to be between 2.5 and 3.0 for CFA and bored piles socketed into the weathered siltstone. In Table 4.3.2 (C) of AS 2159 – 2009 an average risk rating of between 2.5 to 3.0 is defined as low to moderate risk. The resultant basic geotechnical strength reduction factor for the assessed risk category is 0.52 for CFA and bored piles.

The piling code allows an increase in the basic geotechnical strength reduction factor depending on the type and extent of pile testing to be undertaken.

We have assessed that dynamic load testing of cast in situ piles (CFA piles founding in the weathered siltstone) can increase the basic geotechnical strength reduction factor by 0.06 for 1% of piles tested, 0.12 for 3% of piles tested and 0.16 for 5% of piles tested. The actual geotechnical strength reduction factor adopted will depend on the assessment of risk factors undertaken by the designer and the percentage of piles to be tested.

We note that it is generally not practical to undertake dynamic testing of bored piles and hence we consider the opportunity to improve the basic geotechnical strength reduction factor is limited to an increase associated with an increased level of observation during construction. Where a geotechnical engineer from Golder observes the drilling of all load bearing bored piles to confirm minimum socket requirements, we consider an increased geotechnical strength reduction factor of 0.60 could be adopted.

The actual geotechnical strength reduction factor adopted will depend on the assessment of risk factors by the designer and the percentage of piles to be tested or the level of observation and assessment during drilling of pile sockets.

Table 8.2.4b of AS 2159 provides guidance on the level of integrity testing for CFA piles. The standard indicates integrity testing of between 5% and 25% depending on certain design considerations and specifically whether the geotechnical or structural capacity governs. Given integrity testing is reasonably quick and is relatively low cost to undertake we recommend that at least 25% of the piles should be tested.

Golder personnel are experienced in undertaking both low strain integrity and high strain dynamic load testing of piles and would be pleased to assist building contractors with this testing, if requested.

7.2.2 CFA piles

The successful installation of CFA piles and their ability to achieve stated design loads relies on the nature and size of the equipment and procedures used in their installation. The recommendations presented in this report assume that piling contractors with satisfactory experience and equipment are engaged for the installation of the CFA piles.

The founding level of CFA piles will depend on the design column load, the pile diameter and the depth to the surface of the highly or less weathered siltstone.

The ground conditions encountered in the boreholes would suggest a suitable founding depth for foundation piles is likely to be within the highly or less weathered siltstone. Given the expected variable depth to the surface of the highly or less weathered siltstone, we recommend that CFA piles are drilled to effective refusal rather than to designated levels of penetration or toe levels. Based on the encountered ground conditions in boreholes the depth to effective refusal of CFA piles is likely to be greater on the eastern side of the site than the western side of the site. The design loads should be confirmed by dynamic load testing and subsequent CAPWAP analysis.

The assessment of the geotechnical design strength for CFA piles is highly dependent on the nature and depth of the founding material, the nature of the equipment used to install the piles and the methodology used to construct the piles. We consider that rather than assess a potential theoretical design value for such piles it is more appropriate to review test data with respect to the pile resistances that have been mobilised on similar piles founding in similar materials.

In assessing likely allowable geotechnical loads for CFA piles at the site, we have reviewed the results of dynamic load testing undertaken on CFA piles drilled to refusal with similar stratigraphic conditions. For preliminary design purposes we recommend the design geotechnical strength values presented in Table 5.

As previously noted, the design of piles is required to be in accordance with the Australian Standard Piling – Design and installation (AS 2159) and the designer of the piles will need to satisfy the criteria presented in the standard.

CFA pile diameter	Previously demonstrated pile resistance*	Recommended maximum R _{dg} ^	Inferred equivalent working load#
600 mm	10 MN	5.6 MN	4.1 MN
750 mm	13 MN	7.3 MN	5.4 MN
900 mm	20 MN	11.2 MN	8.3 MN

Table 5: Indicative typical axial working loads - CFA piles founding in Unit 2b weathered siltstone

* these are approximate / typical values not absolute maximum values

^ these values are subject to confirmation by dynamic load testing and assessment of pile structural capacity

#-these values have been assessed based on an inferred load factor (Rdg / working load) of 1.35.

Please note that the above typical geotechnical strengths are presented as a guide only and we recommend that dynamic testing and CAPWAP analysis is undertaken on CFA piles at the site. Given that the installation of CFA piles is based on an installation methodology (drill to refusal) rather than a theoretical design (such as penetration into materials of a certain weathering and strength) testing to confirm the load settlement performance of CFA piles is a critical part of the design. We consider that between 3% and 5% of all CFA piles should be subject to dynamic load testing and subsequent CAPWAP analysis to confirm the adopted design. The potential for increased settlement beneath pile groups or clusters would need to be assessed once the piling layout is known.

Settlement at the pile head would be made up of elastic shortening of the pile, settlement of the pile length embedded in the weathered siltstone at the designated serviceability load. Settlement is expected to be up to about 1% of the pile diameter. For multiple piles beneath a column group effects would cause increased settlements. Group settlements can only be assessed after the final piling arrangement is known. The differential settlement between adjacent pile groups is estimated to be about half the settlement of a pile group.

As noted previously there may be some areas where the depth to where CFA piles terminates is insufficient for the footing to act as a pile. In these circumstances we recommend that the pile is drilled to a depth such that the length of pile from cut-off level is at least 6D (where D is the pile diameter). Where this requirement cannot be achieved with a CFA pile it may be necessary to construct a bored pile that is socketed into the weathered siltstone.

7.2.3 Bored piles

Bored piles socketed into the weathered siltstone would derive their geotechnical capacity from a combination of shaft and base resistance. Preliminary ultimate unit stresses for the design of axially loaded bored piles are presented in Table 6 for Buildings A and G to the east of the greater site where brecciated siltstone associated with the fault zone is present and in Table 7 for Buildings B, C, E and F to the west of the site where the siltstone encountered was typically more competent. The values presented in Table 6 and Table 7 are ultimate values and hence should be used to assess the ultimate design geotechnical strength (R_{d.ug}) of

the pile which is then required to be factored using the adopted geotechnical strength reduction factor (φ_{d}) for comparison with the design action effect for the pile (E_d) .

Table 6: Indicative maximum ultimate unit stresses - bored piles eastern part of the greater site (Buildings A a	nd
G)	

Material description	Ultimate shaft stress (kPa) for pile diameters <1 m	Ultimate base resistance (kPa)
Residual Clays	75 kPa	NA
XW / XW-HW siltstone (brecciated)	150 kPa	4000 kPa
HW and less weathered siltstone (brecciated)	250 kPa	8000 kPa

XW = extremely weathered, HW = highly weathered - comprises zones of more weathered material.

Table 7: Indicative maximum ultimate unit stresses – bored piles western part of the greater site (Buildings B, C, E and F)

Material description	Ultimate shaft stress (kPa) for pile diameters <1 m	Ultimate base resistance (kPa)
Residual Clays (very stiff or stiffer)	75 kPa	NA
XW-HW siltstone	200 kPa	4000 kPa
HW and less weathered siltstone	500 kPa	8000 kPa

XW = extremely weathered, HW = highly weathered.

It is critical to note that the assessment of bored pile socket lengths using Tables 5 and 6 needs to address the settlement of the pile under serviceability load conditions. This is considered by having a minimum of 60% to 65% of the design action effect for each individual pile taken in shaft resistance. The ultimate base stresses presented in Table 6 and Table 7 would allow the calculation of significantly shorter sockets if the ultimate design geotechnical strength was then multiplied by the strength reduction factor to assess the allowable design action effect. However, these base stresses are used to satisfy the ultimate geotechnical design strength of the piles and are only mobilised at displacements significantly greater than those taken as acceptable for normal building conditions.

Bored piles are drilled as an open hole with the pile reinforcement cage placed and concrete poured following completion of the pile socket. There is the potential for collapse of unsupported bored pile excavation and temporary support (e.g. casing or polymer) may be required to facilitate drilling, particularly within the brecciated siltstone.

If groundwater is encountered during the drilling of bored piles, we expect the rate of groundwater inflow from the weathered rock to be low and readily controlled during drilling and pile construction. If piles extend below the groundwater table then it will be necessary for piles to be poured using a tremie pipe. Tremie pouring of bored piles is good practice anyway to reduce the potential of segregation from concrete hitting the reinforcement cage.

Bored piles should be constructed in the full-time presence of a suitably qualified geotechnical engineer to confirm the subsurface conditions are consistent with those assumed in design. We recommend that the base of the pile is level and essentially free of loose or disturbed material. The sides of the socket should be roughened and cleaned of clay smear prior to casting of the pile.

A preliminary assessment of target toe levels for various sized bored piles are presented in Table 8 below. These pile toe levels have been calculated based on the assumed subsurface profiles below, and by adopting the ultimate unit stresses outlined in Table 6 (for Buildings A and G) and Table 7 (for Buildings B, C, E and F), and a basic geotechnical strength reduction factor of 0.52.

For the preliminary assessment of pile lengths, we have adopted the below sub-surface profiles. It is recommended that a geotechnical engineer observes the construction of piles to confirm socket requirements are met.

Ground profile for west of site (Buildings B, C, E and F)

- 0 to 2.0 m depth: (neglect for contributing to pile load capacity)
- 2.0 m to 4.0 m depth: Residual clay
- 4.0 m to 8.0 m depth: Extremely and extremely to highly weathered siltstone
- 8.0 m and below: Highly weathered siltstone.

Ground profile for east of site (Buildings A and G)

- 0 to 2.0 m depth: (neglect for contributing to pile load capacity)
- 2.0 to 4.0 m depth: Fill (neglect for contributing to pile load capacity)
- 4.0 m to 8.0 depth: Residual clay
- 8.0 m to 18.0 m depth: Extremely and extremely to highly weathered (brecciated) siltstone
- Below 18.0 m depth: highly or less weathered (brecciated) siltstone

Table 8: Target pile toe depth for bored piles

	West of Site: Buildings B, C, E and F		East of Site: Buildings A and G	
Bored pile diameter (mm)	Design working Ioad (kN)	Toe depth (m) – below basement level	Design working Ioad (kN)	Toe depth (m) – below basement level*
600	3000	10.0	3000	19.0
600	5000	16.5	5000	NA
750	3000	8.0	3000	17.0
750	5000	13.5	5000	NA
900	3000	7.0	3000	14.5
900	5000	11.0	5000	21.0

	West of Site: Buildings B, C, E and F		East of Site: Buildings A and G	
Bored pile diameter (mm)	Design working Ioad (kN)	Toe depth (m) – below basement level	Design working Ioad (kN)	Toe depth (m) – below basement level*
1200	3000	6.0	3000	10.0
1200	5000	7.5	5000	17.0

* We note that boreholes extended to maximum depth of about 17 m. Therefore, these are estimated pile lengths only. We recommend that if bored piles are to be used on the eastern side of the site that further investigation is undertaken to verify the ground conditions adopted for design.

The top of socket settlement of an individual bored pile designed in accordance with the above recommendations is expected to be up to about 1% of the pile diameter.

The pile design parameters presented above assume appropriate construction practices are adhered to by the piling contractor. Should appropriate roughening and cleaning practices not be undertaken by the piling contractor then we consider that a reduction in the above pile design parameters would need to be adopted.

If a geotechnical engineer observes the construction of bored piles to confirm socket requirements are met, there is potential to reduce the pile lengths, as a realistic ground profile (rather than an assumed conservative ground profile) could be adopted and an increased strength reduction factor could apply.

7.2.4 Geotechnical construction issues for bored and CFA piles

Bored piles are drilled as an open hole with the pile reinforcement cage placed and concrete poured following completion of the pile socket. There is the potential for collapse of unsupported bored pile excavation and temporary support (e.g. casing) may be required. CFA piles are typically drilled to refusal in the weathered siltstone. The auger supports the hole during drilling to refusal and concrete is pumped into the void as the auger is extracted, so other temporary support for the pile excavation is not required. The construction methodology for CFA piles requires the steel reinforcing cage to be pushed into the wet concrete following extraction of the auger. This can limit the length over which the pile can be reinforced.

Even though dyke materials weren't encountered during the geotechnical investigation there is the potential to encounter these materials during the drilling of piles. The impact of weak dyke material on the pile length is governed by the angle and orientation of the dyke. If the dyke is near vertical the pile may need to extend a significant distance to penetrate through the dyke. Where the dyke material intersects the socket shaft of a pile at a relatively shallow angle it may have a lesser impact with that section of the socket (and potentially the material above the dyke) ignored in terms of geotechnical strength.

The depth to groundwater is expected to be about 4 m to 9 m below the current ground surface level. Depending on the pile diameter adopted there is potential for piles to extend below the groundwater table. We do not recommend dewatering of bored piles which may increase instability and consider it will be necessary for piles extending below the groundwater table to be poured using a tremie pipe. Tremie pouring of bored piles is good practice anyway to reduce the potential of segregation from concrete hitting the reinforcement cage.

7.2.5 Piling platform

Our experience with piling rigs is that the maximum pressure beneath the tracks during piling can be up to about 300 kPa. We recommend that an assessment of support conditions and the requirements for the placement of a platform is made prior to commencement of piling.

Piling platform requirements will depend on the imposed pressure beneath the tracks and the nature of the exposed subgrade materials.

If requested following appointment of a piling contractor and provision of the track loads, we can prepare a proposal to provide an assessment of the subgrade conditions post demolition and advice on procedures for the preparation and placement of a piling platform and the minimum thickness of any platform that may be required.

7.3 Spread footings

Shallow strip or pad footings founding within the natural stiff to very stiff clays Unit 2a residual clay could be a suitable footing option for lightly-loaded columns (say less than 1 MN working load). The Unit 1 fill is not considered a suitable founding stratum for shallow footings. We recommend that shallow spread footings founded in natural soil are founded with a minimum embedment of at least 1 m. This may require either over-excavation or the depth of embedment to be increased where significant thicknesses of fill is present.

We recommend that spread footings founding within natural residual clay of at least stiff consistency is proportioned based on a maximum allowable bearing pressure of 150 kPa for pad footings and 120 kPa for strip footings (up to a maximum footing dimension of about 2.6 m by 2.6 m for pads and 1.5 m width for strip footings).

The total movement of spread footings can be estimated by summation of the load induced settlement and shrink / swell movements. We estimate load induced settlement of a spread footing proportioned in accordance with the recommended bearing pressures on natural soil to be less than about 15 mm to 20 mm. The differential settlement between adjacent footings (similarly loaded and sized) is expected to be about half this value. However, for lightly loaded footings founded on reactive clay, additional vertical movement may occur due to seasonal moisture-induced volumetric changes.

Refer to AS2870 (2011) 'Residential slabs and footings' for guidance on maintenance requirements for shallow footings and floor slabs that should be adopted to reduce potential ground movements due to shrink swell behaviour of the natural clay soils (noting that given the size of the proposed development we consider the standard footing systems outlined in AS 2870 would not be applicable for this proposed development).

8.0 SITE RETENTION

We understand that there are single level and double level basements proposed across parts of the site. Due to the sloping ground the retained height of the basements is greatest over the northern side of the basements. We understand the maximum retained heights for basements are up to about 6 m in the north east of the site but that the majority of the site will have a retained height of 4 m or less. We also expect there to be localised deeper excavations required for lift overruns / building cores.

Based on the subsurface conditions encountered during the investigation we expect that the basement bulk excavation and any localised excavations will encounter fill (Unit 1) overlying stiff or stiffer clays (Unit 2a – Residual clay) and potentially weathered siltstone (Unit 2b).

The design and construction of a retention system is dependent on the nature of the materials to be retained, the sequence of construction, the nature and extent of adjacent structures and footings, the allowable lateral ground movements and associated settlements behind the wall, groundwater conditions and the magnitude of any vertical loads to be supported by the wall.

Based on the subsurface materials encountered and our experience with similar developments, we consider a cantilevered or anchored soldier pile wall with shotcrete infill panels is likely to be the preferred method of retention for the development.

Soldier piles could be installed using CFA or bored pile techniques, with basement excavation and the progressive installation of shotcrete panels (with drainage if a drained basement is adopted) undertaken in stages. Cantilevered soldier piles will require deeper embedment below the proposed excavation level than anchored piles.

In the temporary condition, soldier piles could potentially be cantilevered (for wall heights less than say 3.5 m) or anchored depending on the method of construction and requirements to limit lateral and vertical ground movement behind the walls. In the permanent condition, we assume that the retaining walls would be supported by internal floor slabs (i.e. internal basement or ground floor slabs will provide props in the permanent condition). Following construction of the building any temporary ground anchors would be destressed or props removed.

Alternatively, where space permits, temporary batter slopes with construction of a precast wall and subsequent backfilling behind the retaining wall could also be adopted for basements excavations up to about 3 m depth.

The following sections provide guidance on design earth pressures for retention structures that could be constructed using different methods or techniques.

8.1 Retaining wall design pressures

8.1.1 Anchored or propped retaining walls

For preliminary design of retaining walls that are propped or anchored in the temporary and permanent condition we recommend wall pressures dependent on the zone of influence of the proposed excavation as follows:

- The zone of influence is taken as a zone lying above a plane, sloping at 40 degrees above the horizontal, from the base of the excavation.
- Where adjacent buildings and or movement sensitive services are not within the zone of influence, the lateral earth pressure is a uniform pressure of 4H kPa, where H is the total height of the wall in metres.
- Where adjacent buildings and/or movement sensitive services exist within the zone of influence, a uniform pressure of 6H kPa should be adopted, where H is the total height of the wall in metres.
- The effect of surcharge pressures (including surcharge loads from compaction equipment where relevant, for example if the retaining wall is required to support backfill) should be added to the lateral earth pressures. Where adjacent building footings or movement sensitive services are not within the zone of influence, an earth pressure coefficient of 0.4 should be adopted. Where adjacent building footings and/or movement sensitive services are within the zone of influence, an earth pressure coefficient of 0.4 should be adopted. Where adjacent building footings and/or movement sensitive services are within the zone of influence, an earth pressure coefficient of 0.6 should be adopted.

The above recommendations assume positive drainage will be provided behind the retaining walls. This may be provided as a series of strip drains placed behind the shotcrete infill panels. If drainage is not provided the retaining wall design would need to allow for a potential build-up of hydrostatic pressures following periods of heavy rain etc. Water intercepted by this drainage may be collected by a perimeter sub floor drainage system that drains to a sump for off-site disposal.

The main retaining elements (e.g. anchored or propped soldier piles) should be designed for the pressures recommended above. Where infill panels are used in conjunction with soldier piles they may be designed for a lower pressure to take advantage of pressure reduction due to arching of the ground between the individual soldier piles. It is recommended that the infill panels be designed for half the previously recommended pressures.

Ground anchors

We anticipate that a soldier pile wall may be supported during excavation by temporary ground anchors. Following construction of the floor slabs, the ground anchors would be de-stressed as the floors will provide lateral support in the permanent condition.

Installation of ground anchors should be on a design and construct basis, with contractors required to achieve the stated loads via proving tests. To reduce lateral displacement of the supported wall the anchors should be installed at a shallow depth as soon as is practical with excavation to proceed no further than say 0.5 m below the level of the anchor prior to anchor installation and anchor stressing.

For the purposes of preliminary sizing of ground anchors, assuming the ground anchors are installed using air flush drilling techniques, we recommend a maximum allowable soil to grout bond stress of 50 kPa for the Unit 2a and 100 kPa for the Unit 2b materials in the west of the site and 75 kPa for Unit 2b materials in the east of the site (comprising Buildings A and G).

We recommend that the fixed length of anchors be no less than 3 m and no greater than 9 m and should start a minimum of 1 m beyond a 45° line drawn up from the base of the wall. Although extensive sandy soils are not anticipated on this site, anchor holes drilled in the sandy soils below the water table could potentially be unstable during drilling, anchor installation and grouting. Collapse of anchor holes may result in subsidence of ground surrounding the basement excavation. Casing may be required to maintain an open hole during anchor installation.

For traditional post tensioned anchors we consider the anchors should be secondary grouted. That is, grouting the full length of the anchor with only sheathing used over the free length to be an unsatisfactory installation methodology. We recommend that the fixed length is grouted prior to post tensioning with the designated free length maintained free of grout until after the anchor is post tensioned.

We recommend that testing of anchors is in accordance with AS 4678 – Earth-retaining structures which requires temporary anchors to be proof loaded to 125% of the design working load and held for a period of 15 minutes. We also recommend a geotechnical engineer from Golder observes the installation and testing of a trial anchor to confirm anchor performance prior to installation of production anchors.

8.1.2 Cantilever retaining walls

Depending on the proposed depth of excavation and the lateral displacements that can be tolerated behind the wall it may be possible to construct a wall that is not anchored or propped in the temporary condition and hence is a cantilever wall. For example, where the depth of the excavation is relatively small a soldier pile wall with infill panels and no propping could be designed based on the following design pressures: A triangular pressure distribution increasing with depth from zero at the ground surface, at the rate of $K\gamma/m$. We recommend a coefficient of earth pressure K=0.4 where movement sensitive services / structures are not within the zone of influence of the excavation and 0.6 where they are. The recommended unit weight (γ) to be adopted for the fill and natural soils above the groundwater table is 20 kN/m³.

The effects of surcharge pressures also need to be added in accordance with Section 8.1.1. The above recommendations assume positive drainage will be provided behind the retaining walls. If drainage is not provided the retaining wall design would need to allow for the build-up of hydrostatic pressures following periods of heavy rainfall.

8.1.3 Soldier pile spacing

The spacing of soldier piles is likely to be governed by the potential for loss of material between piles, based on our experience with soldier pile walls in fill over residual clays we consider a centre to centre spacing of about 3D, where D is the diameter of the soldier piles (i.e. for 600 mm diameter piles a maximum centre to centre spacing of 1.8 m to be adopted). Some loss of material from the upper fill and soil should be expected from between the piles. We recommend that the first excavation lift be limited to a depth of about 1.5 m (measured below the top of the capping beam) before installing the first row of anchors and supporting infill panels.

The depth of embedment of the soldier piles below basement bulk excavation level for toe stability is dependent on the strength of the materials encountered below the excavation level.

8.1.4 Retaining walls constructed using temporary batter slopes

If sufficient space is available, excavations can be undertaken using temporary batter slopes with subsequent backfilling behind the retaining wall, (single level basement only, maximum 3 m depth). Refer to a later section for recommendations on maximum temporary batter slopes.

For retaining walls constructed using this method we recommend the following wall design pressures are adopted:

- A minimum of 15 kPa (due to compaction induced lateral pressures) or a triangular pressure distribution increasing with depth from zero at the ground surface at the rate of Kγ/m. We recommend a coefficient of earth pressure of K = 0.4 over the height of the wall.
- The recommended unit weight (γ) to be adopted for the fill and near surface material above the groundwater table is 20 kN/m³.

The above recommendations assume positive drainage will be provided behind the retaining walls. If drainage is not provided the retaining wall design would need to allow for the build-up of hydrostatic pressures following periods of heavy rainfall.

The compaction of the backfill material behind the wall is important in reducing settlement beneath adjacent ground slabs supported directly by the finished ground surface. We recommend that the select backfill be compacted to achieve a minimum density ratio of 98% Standard in accordance with AS 1289.5.1.1 and AS 1289.5.4.1 However, to avoid excessive compaction pressures on the wall we recommend that the size of the compaction equipment used should be limited. In areas where there is insufficient room to operate compaction equipment behind the wall we recommend the use of cement stabilised sand as a backfill material up until a level where there is sufficient space to operate compactive equipment.

The effects of surcharge pressures also need to be added in accordance with Section 8.1.1.

8.1.5 Building core and lift overrun pits

Due to the expected plan area of the building cores and lift overrun pits we anticipate these will likely be excavated by either benching or battering, provided there is sufficient space on site. If these excavations are benched/battered (see Section 8.4) there will be no requirement for temporary retaining walls.

8.2 Groundwater management

As discussed in Section 6.3, the measured groundwater levels in boreholes were relatively higher int the east of the site at elevations ranging between RL 10.8 m AHD and RL 11.6 m AHD (in Boreholes GA20-BH-HAW-03, GA20-BH-HAW-09, GA20-BH-HAW-12) compared to groundwater levels measured in boreholes in the western part of the site at elevations ranging between RL 6.4 m AHD and 7.9 m AHD (in Boreholes GA20-BH-HAW-01, GA20-BH-HAW-05, GA20-BH-HAW-10).

The proposed top of basement floor slab levels in the east of the site are provided below:

- P1 basement slab RL 14.1 m AHD but we understand the P1 basement slab level could be lowered to about RL 12.6 m AHD in the northern section of the basement and be connected to lower level of the P2 basement.
- P2 lowest basement slab RL 11.6 m AHD with potential for this to be lowered to RL 11.1 m AHD if connected to P1 basement
- P3 basement slab RL 14.0 m AHD
- P4 basement slab RL 17.1 m AHD.

Based on the measured groundwater level in standpipes, the P1 basement bulk excavation and the eastern side of P2 basement excavation may extend close to the groundwater level on the eastern side of the site. The eastern side of the P3 basement excavation is about 2.4 m above the groundwater level measured in the eastern boreholes. Locally deeper excavations for lift overrun pits and temporary excavations for spread footings or pile caps may extend below the groundwater in the eastern side of the site.

We recommend the construction of a continuous drainage layer beneath the lowest basement floor slabs for basements P1, P2 and P3 so that if groundwater if encountered can be intercepted and directed to a sump and pumped out to prevent a buildup of hydrostatic pressure that could damage the floor slab. We do not consider a permanent drainage layer beneath the P4 basement slab is necessary.

We recommend that all lift overrun pits or similar structures that locally extend below the basement floor slabs or below the lowest building floor slabs in other areas where it would not be practical to construct and maintain subfloor drainage be designed and constructed as a tanked/sealed (designed to prevent groundwater inflow and designed to withstand hydrostatic pressure).

The construction of drained basements requires a robust drainage system that is capable of functioning over the life of the development. The drainage layer typically comprises open-graded crushed rock placed over and covered by a geotextile separation layer. Retaining wall drainage can be connected into the drainage layer so that retaining wall and subfloor drainage is directed into a sump for pumping and onsite treatment and reuse or offsite disposal. Whilst constructing the drainage layer, particular care should be taken to ensure the geotextile is not damaged by the rock backfill which in turn is not contaminated with soil or other materials. We recommend that the geotextile used be a non-woven needle punched geotextile with an O95 (95% of openings less than) value of 120 microns or less. The robustness of a geotextile is measured by its 'G' rating in accordance with Austroads guidelines. We suggest it may be prudent to adopt a robust geotextile with a 'G' rating of at least 2000 to reduce the potential for damage to the geotextile during construction. Maintaining the integrity of the fabric is critical to the long-term performance of the drainage system. Damage of the geotextile during placement and trafficking of a rock layer must be avoided and any damaged areas repaired.

Given the proposed basement floor slab is above the groundwater level as measured during the investigation it is not practical for us to comment on the rate of inflow that could occur if the groundwater level rises in the future. Some allowance should be made for the collection of water from behind the retaining walls and potential rises in groundwater level that could occur for a variety of reasons including climatic conditions, leaking services etc. Given temporary footing or pile cap excavations are unlikely to extend more than about 1 m below the groundwater level (if at all) we expect temporary groundwater inflow could be managed by pumping from a temporary sump.

The disposal of groundwater during either temporary dewatering or in the permanent condition will require an agreement with the relevant authority to allow the groundwater to be pumped to sewer under a trade waste agreement (generally separated into construction and post construction) or to stormwater with approval from the relevant council authority.

Requirements for the offsite disposal of collected water will need to be confirmed with the relevant regulatory authorities.

8.3 Excavation characteristics

We expect excavations will be required for the basements, lift overrun pits, building cores etc. extending about 2 m below the lowest basement floor slab levels (i.e. in basement areas up to about 8 m depth). Excavations to this depth are expected to encounter Unit 1 fill material overlying stiff to very stiff Unit 2a residual clays and Unit 2b extremely or extremely to highly weathered siltstone or sandstone. We expect the majority of the excavation should be able to be undertaken using conventional excavation equipment (i.e. medium to large excavators). We note that remnant old concrete slabs and footings are likely to require the use of a hydraulic breaker to facilitate their removal.

8.4 Temporary and permanent batter slopes

We recommend that the maximum slopes for any unsupported temporary batters, not exceeding 3 m in total height, should be 1.5H:1V in Unit 1 fill, Unit 2a residual clays and Unit 2b extremely or extremely to highly weathered siltstone or sandstone. If site restrictions require temporary batters to be steepened beyond these recommended slopes, we recommend that ground support systems be implemented before proceeding with any excavation works.

We recommend for permanent batters:

- i) Maximum slopes not exceeding 3 m in total height be 2H:1V in the Unit 1 fill and Unit 2a residual natural clays and Unit 2b weathered siltstone or sandstone.
- ii) A stability check is performed on all proposed temporary and permanent unsupported batters exceeding 3 m in total height.
- iii) Drainage control is provided at the top of all batters, to prevent water ponding behind the crest and infiltration of ponded water, which would affect the stability of the batter slopes.

At these recommended slopes, loss of material should be expected from unsupported batter faces in soils due to fretting as a result of wetting and drying. To prevent this, shotcrete could be sprayed on the batter face with evenly spaced drainage weep holes across the face.

In areas adjacent to existing buildings, flatter batters would be required. If temporary batters are proposed in these areas, further advice should be sought prior to any construction works.

8.5 Reuse of excavated materials

We are unaware of any specific requirement to reuse excavated materials as engineered fill at the site. The following comments are provided as general guidance regarding the potential to reuse the excavated materials.

We consider that any topsoil or existing fill materials (Unit 1) are unsuitable for reuse as engineered fill.

Based on the laboratory testing results, the residual clay material (Unit 2a) was generally a medium to high plasticity clay. High plasticity clays can lead to difficulties during earthworks including difficulties in achieving a uniform moisture content, poor workability during wet weather, inability to meet stringent proof-roll criteria and potential loss of strength after placement if subjected to moisture ingress. However, with careful work practices, these materials could potentially be reused as engineered fill. Stabilisation (e.g. by adding lime) of the high plasticity clay could also be considered if they are to be used as select fill materials (i.e. low reactivity fill).

Engineered fill should meet the following criterion:

(Plasticity Index) x % passing 0.425 mm sieve (AS sieve) to be less than 1000

Based on the laboratory testing results the plasticity index of the Unit 2a materials ranged from about 4% to 34% at depths ranging between 1.5 m to 4.4 m. The average plasticity index of these values is about 25% which would require a maximum of about 40% material passing the 0.425 mm sieve to satisfy the above criteria. Therefore, the Unit 2a residual soil material, assessed to be clay would require some treatment (i.e. mixing, stabilisation, etc.) before it can be reused as engineered fill.

If requested, we would be pleased to provide further advice if reuse of Unit 2a soils as engineered fill is proposed.

8.6 Subgrade preparation procedures

The exposed subgrade at the proposed built excavation levels is expected to consist of either Unit 1 fill or Unit 2a residual clays for areas without a basement and Unit 1 fill, Unit 2a residual clays or Unit 2b weathered siltstone at the bulk excavation level of the basements. Based on the results of the investigation and the laboratory testing we recommend that where slabs on ground are considered that they should be founded either on or within the natural soils. It is not suitable for footings or slabs on ground to be founded on the existing fill. If slabs on ground are proposed to be founded in areas where existing fill is present, we recommend that the fill is removed to natural surface level, replaced with select engineered fill, and compacted in accordance with the recommendations presented below. Alternatively, a suspended slab option could be adopted in these areas.

We recommend the following general procedures are adopted for subgrade preparation:

Excavate to the design subgrade level.

- Compact the exposed subgrade and inspect for fill or soft, loose, weak or unstable areas.
- Removed any fill, soft, loose, weak or unstable areas and replace with suitable select fill.
- Any select fill used should be relatively stable to volume change with changes in moisture content.

Suitable imported material types are expected to include predominantly granular materials such as crushed scoria, non-descript crushed rock, weathered siltstone or sandstone or clayey sand. The select fill should be well graded with a maximum particle size after compaction of 50 mm. The select imported fill should meet the following criterion:

(Plasticity Index) x % passing 0.425 mm sieve (AS sieve) to be less than 1000

All fill should be placed in uniform horizontal layers not exceeding 200 mm loose thickness and each layer compacted to achieve a minimum density ratio of 98% Standard in accordance with AS 1289.5.4.1. The moisture content of the minus 19 mm fraction should be within 3% of the standard optimum moisture content (AS 1289.5.1.1).

We recommend that subgrade preparation, fill placement and compaction be undertaken in accordance with AS3798, 'Guidelines on earthworks for commercial and residential development'. Any field density testing should be performed in accordance with the test methods specified in AS1289.

If conditions vary significantly during construction and there is difficulty in achieving a suitable base prior to placement of the ground floor basement slab additional advice should be sought.

The long term performance of slab on ground floors built over a clay subgrade is dependent on the subgrade moisture condition at both the time of construction and in the years following construction. If very wet conditions are prevalent at the time of construction then there is the risk of subsequent shrinkage occurring as the clay dries out. Alternatively, if very dry conditions have prevailed for a significant period of time prior to construction there is the potential for heave as the clays absorb moisture after construction of the slab. Therefore, it is important that the clay subgrade (if encountered) and any engineered (particularly clay) fills are prepared or placed close (within 2%) of the soils' optimum moisture content for standard compaction and this moisture content is maintained during and after floor slab construction.

The potential to adopt a slab on ground system will also depend on the structural capacity of the slab to tolerate differential movement without distress and the consequence to building use if differential movement occurs. If some differential movement of the slab on ground cannot be accommodated or tolerated, we recommend the adoption of a suspended floor slab and the potential inclusion of a void former beneath the slab to guard against excessive movement as a result of swelling of the clays beneath. We expect the use of a slab on ground may be tolerated within carpark areas where some differential movement will not be tolerated and in these areas we would recommend a suspended floor slab be adopted spanning between and supported by the building footings.

We recommend that any slab on ground floor systems are made structurally independent of building footings and are well-articulated to allow moisture change induced movements to occur without structural distress.

8.7 Subgrade Design

Based on the laboratory test results we recommend that a design subgrade CBR of 3.0 % be adopted for flexible pavements constructed on a subgrade comprising the Unit 2a medium to high plasticity clay soils.

For the purposes of concrete pavement design the short and long term Young's Modulus parameters for the subgrade may be estimated from Figure 1.24 of the Cement and Concrete Association of Australia (CCAA) Industry Guide -T48, Guide to Industrial Floors and Pavements – 1997 (last revised October 2009).

9.0 EARTHQUAKE DESIGN

The methods of assessing earthquake risk classification and consequential design implications are outlined in Australian Standards AS 1170.4 – 2007, 'Structural Design Actions Part 4: Earthquake actions in Australia'. The standard uses a number of factors in assessing an earthquake design category for a particular structure at a given site.

The stratigraphy at this site is likely to include a layer of fill and residual clays over variably weathered siltstone. The thickness of soil above the weathered siltstone is more than 3 m and therefore we consider that a site Sub-Soil Class of C_e – shallow soil site can be adopted.

The hazard factor (Z) depends on the geographic location of the site. The hazard factor (Z) for Melbourne presented in Table 3.2 of AS 1170.4 - 2007 is 0.08.

10.0 IMPORTANT INFORMATION

Your attention is drawn to the document - 'Important information relating to this report' (LEG04, RL2) which is included in Appendix E of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder, but rather to ensure that all parties who may use this report aware of the responsibilities each assumes in so doing.

We would be pleased to answer any questions the reader may have regarding this 'Important Information'.

Signature Page

Golder Associates Pty Ltd

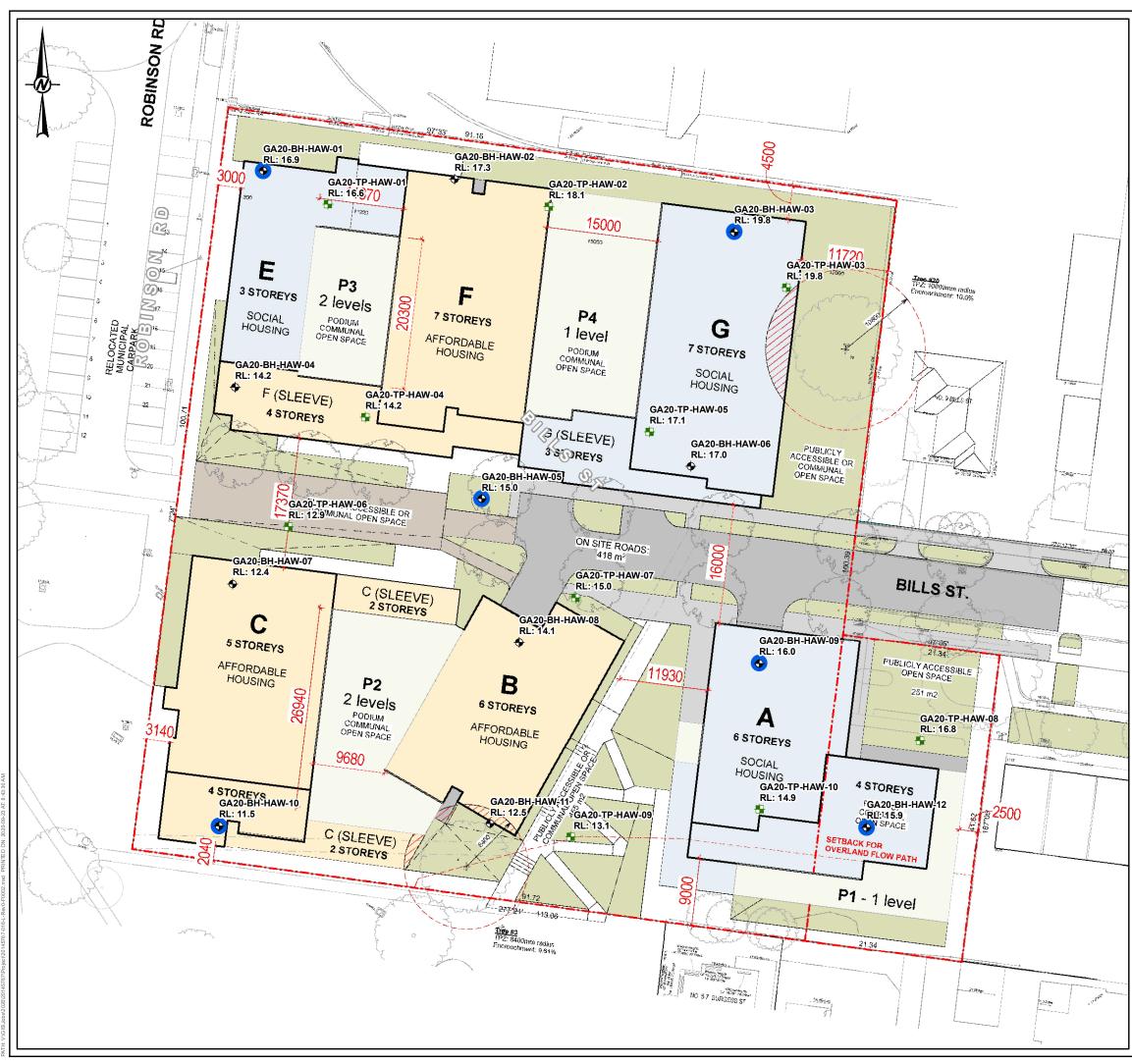
Har

Jan los & Social.

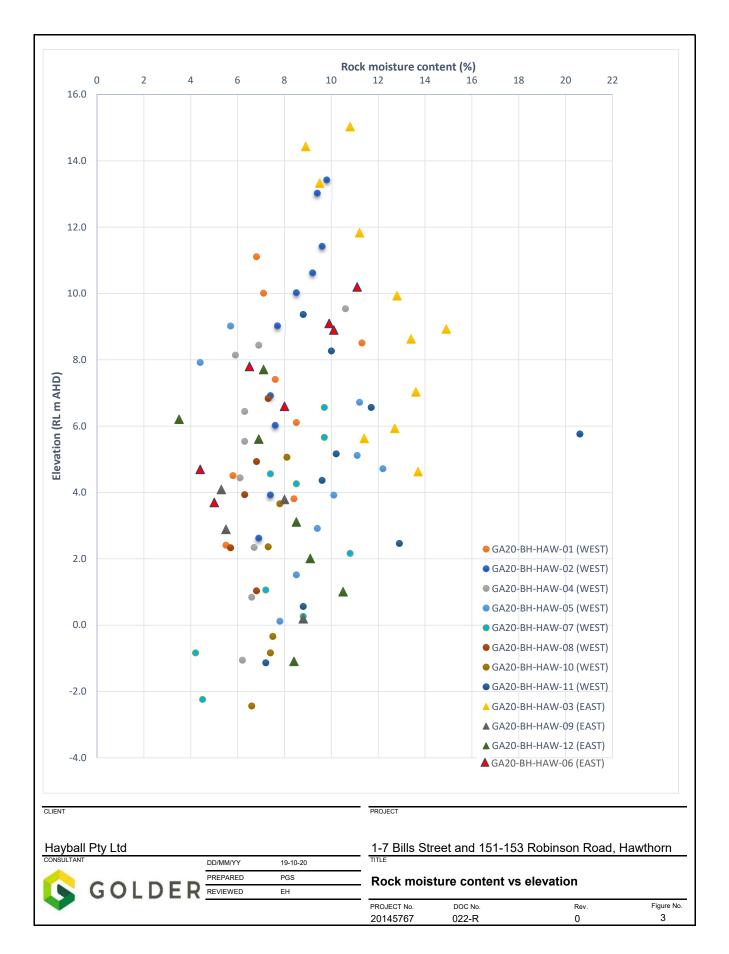
Paul Strasser Geotechnical Engineer

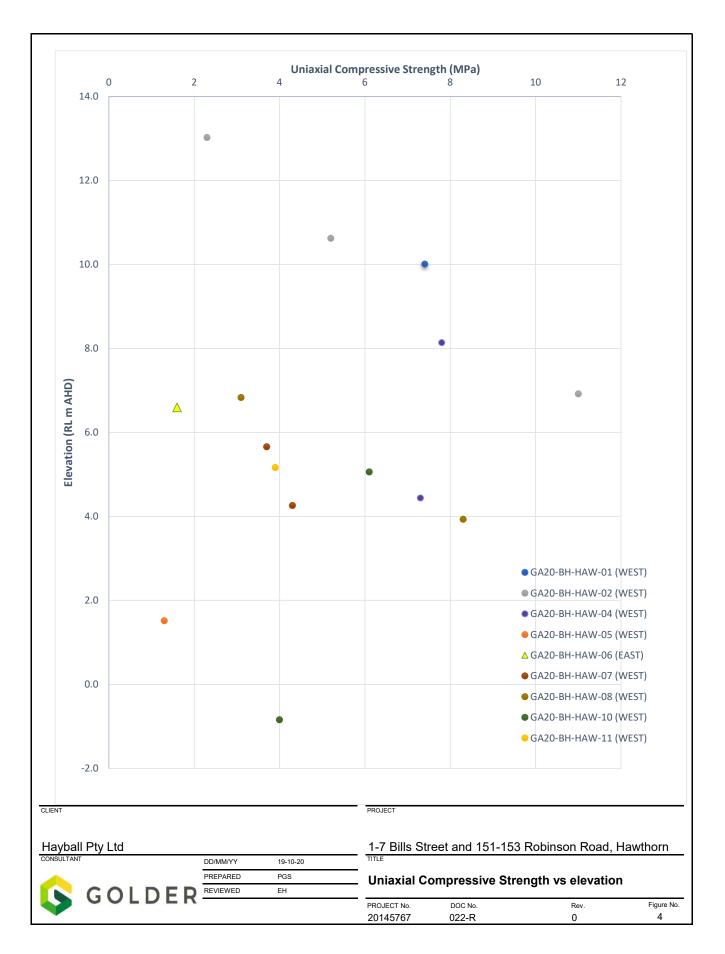
Doug Goad *Principal*

PGS/DLG/pgs


A.B.N. 64 006 107 857

Golder and the G logo are trademarks of Golder Associates Corporation


https://golderassociates.sharepoint.com/sites/128940/project files/6 deliverables/20145767-022-r-bills geotech/20145767-022-r-rev0.docx



KEY MAP	ko.	oin	ay GIV
	Kooyongko	Robin	rajong Rd
PXie	oyo	Scott St	
5	Ko		Miami St
		Fairn	nount Rd
R			slyn St
"eserve			
Reserve	Ra	Wise	man St
	NC DI	- Lind	le Ave Mount la
		Aireda	
			Const
	elman	Burges	
Cowe	n Park		s St And
	Fin Patter Res	erve Gardiner	-
13/64		Reserve	a=R
	G	R.	Bethune S
-Ro	A Cres	E Cate	N 000
nda Rd		Cato Ln I	
Ave		Cato St	Cato
LEGEND		Cateri	Park
	hnia-ID '		
	hnical Borehole	e Location	
🖶 Testpit	Location		
Soreho	le with Ground	water Monito	ring Well
-			
Site Ex	tent		
	0	10	20
	1:500	METRE	ES
NOTE(S)	1994 MGA ZONE 55.		
NOTE(S) 1. PROJECTION: GDA			
1. PROJECTION: GDA			
1. PROJECTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE	SOURCED FROM NEARM D FROM ESRI ONLINE B/	ASEMAPS.	PTURE 28/04/2020.
1. PROJECTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE		ASEMAPS.	PTURE 28/04/2020.
1. PRÓJĚCTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR CLIENT	D FROM ESRI ONLINE BA CED FROM DATA.VIC.GC	ASEMAPS.	PTURE 28/04/2020.
1. PROJECTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR	D FROM ESRI ONLINE BA CED FROM DATA.VIC.GC	ASEMAPS.	PTURE 28/04/2020.
1. PRÓJECTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR CLIENT HAYBALL PTY	D FROM ESRI ONLINE BA CED FROM DATA.VIC.GC	ASEMAPS.	PTURE 28/04/2020.
1. PRÓJĚCTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR CLIENT HAYBALL PTY PROJECT	D FROM ESRI ONLINE BA CED FROM DATA.VIC.GC	ASEMAPS. IV.AU.	PTURE 28/04/2020.
1. PRÓJĚCTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR CLIENT HAYBALL PTY PROJECT	D FROM ESRI ONLINE B. CED FROM DATA.VIC.GC	ASEMAPS. IV.AU.	PTURE 28/04/2020.
1. PRÓJĚCTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR CLIENT HAYBALL PTY PROJECT PUBLIC HOUS TITLE	D FROM ESRI ONLINE B. CED FROM DATA.VIC.GC	asemaps. IV.AU. PROGRAM	
1. PROJECTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR CLIENT HAYBALL PTY PROJECT PUBLIC HOUS TITLE INVESTIGATIC	D FROM ESRI ONLINE B. CED FROM DATA.VIC.GC	asemaps. IV.AU. PROGRAM	
1. PROJECTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR CLIENT HAYBALL PTY PROJECT PUBLIC HOUS TITLE INVESTIGATIC HAWTHORN	D FROM ESRI ONLINE B. CED FROM DATA.VIC.GC	ASEMAPS. IV.AU. PROGRAM	REET
1. PROJECTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR CLIENT HAYBALL PTY PROJECT PUBLIC HOUS TITLE INVESTIGATIC	D FROM ESRI ONLINE B. CED FROM DATA.VIC.GC	PROGRAM	REET 2020-09-22
1. PRÓJECTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR CLIENT HAYBALL PTY PROJECT PUBLIC HOUS TITLE INVESTIGATIC HAWTHORN CONSULTANT	D FROM ESRI ONLINE B, CED FROM DATA.VIC.GC	PROGRAM	TREET 2020-09-22 CJS
1. PRÓJECTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR CLIENT HAYBALL PTY PROJECT PUBLIC HOUS TITLE INVESTIGATIC HAWTHORN CONSULTANT	D FROM ESRI ONLINE B, CED FROM DATA.VIC.GC	ASEMAPS. IV.AU. PROGRAM AN - BILLS ST YYYY-MM-DD DESIGNED PREPARED	2020-09-22 CJS CJS
1. PRÓJECTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR CLIENT HAYBALL PTY PROJECT PUBLIC HOUS TITLE INVESTIGATIC HAWTHORN CONSULTANT	D FROM ESRI ONLINE B, CED FROM DATA.VIC.GC	ASEMAPS. IV.AU. PROGRAM AN - BILLS ST YYYY-MM-DD DESIGNED PREPARED REVIEWED	2020-09-22 CJS CJS DLG
1. PRÓJĚCTION: GDA REFERENCE(S) 1. AERIAL IMAGERY S 2. KEY MAP SOURCE 3. STATE DATA SOUR CLIENT HAYBALL PTY PROJECT PUBLIC HOUS TITLE INVESTIGATIC HAWTHORN CONSULTANT	D FROM ESRI ONLINE B, CED FROM DATA.VIC.GC	ASEMAPS. IV.AU. PROGRAM AN - BILLS ST YYYY-MM-DD DESIGNED PREPARED	2020-09-22 CJS CJS

	Koayongko	Robin	Ca
	ovo	Scott St	Irrajong Rd
	Ko		Miamist
		Fair	mount-RdC
Reserve			sslyn St
oen.	20		eman St
	ia D		
		Aired	ale Ave Mount lo
			Const
	Zelman en Park 📿	Burge	ss StAnd
	Patt	erson John	F
Tall	und Cres	serve Gardine	LE Commenter and the second se
IN I	or Ca	Gato Ln	Bethune S
da Rd	13	Cato Ln	N OLO TO
vene		Cato s	
		U Catar	Park
	chnical Boreho	le Location	
	Location		
🞐 Boreho	ole with Ground	dwater Monito	oring Well
	0	10	20
DTE(S)	1:500	METR	RES
	A 1994 MGA ZONE 55.		
	FROM HAYBALL DRAWIN	G 2480 A00.03 REV 7.	
EFERENCE(S) PLAN SOURCED F			
PLAN SOURCED F	ED FROM ESRI ONLINE E RCED FROM DATA.VIC.G		
PLAN SOURCED F KEY MAP SOURCE STATE DATA SOUR			
PLAN SOURCED F KEY MAP SOURCE STATE DATA SOUR	RCED FROM DATA.VIC.G		
PLAN SOURCED F KEY MAP SOURC STATE DATA SOUR LIENT IAYBALL PTY	RCED FROM DATA.VIC.G		
PLAN SOURCED F KEY MAP SOURC STATE DATA SOUR LIENT IAYBALL PTY ROJECT	RCED FROM DATA.VIC.G	OV.AU.	
PLAN SOURCED F KEY MAP SOURC STATE DATA SOUR LIENT IAYBALL PTY ROJECT	rced from data.vic.g	OV.AU.	
PLAN SOURCED F KEY MAP SOURC STATE DATA SOUI LIENT IAYBALL PTY ROJECT UBLIC HOUS	CED FROM DATA.VIC.G	PROGRAM	
PLAN SOURCED F KEY MAP SOURC STATE DATA SOUI LIENT IAYBALL PTY ROJECT UBLIC HOUS TLE NVESTIGATIO	CED FROM DATA.VIC.G	PROGRAM	DPOSED BUILDING AWTHORN
PLAN SOURCED F KEY MAP SOURCE STATE DATA SOUI IENT IAYBALL PTY ROJECT UBLIC HOUS TLE NVESTIGATIO	CED FROM DATA.VIC.G	PROGRAM	
PLAN SOURCED F KEY MAP SOURCE STATE DATA SOUL LIENT IAYBALL PTY ROJECT UBLIC HOUS ITLE NVESTIGATIO	CED FROM DATA.VIC.G	PROGRAM LAN WITH PRO	AWTHORN
PLAN SOURCED IN KEY MAP SOURCE STATE DATA SOUL LIENT IAYBALL PTY ROJECT PUBLIC HOUS TILE NVESTIGATION DEVELOPME ONSULTANT	RCED FROM DATA.VIC.G Y LTD SING RENEWAL ON LOCATION P NT LAYOUT - BIL	PROGRAM LAN WITH PRO LS STREET, H YYYY-MM-DD DESIGNED	AWTHORN 2020-09-23
PLAN SOURCED IN KEY MAP SOURCE STATE DATA SOUL LIENT IAYBALL PTY ROJECT PUBLIC HOUS TILE NVESTIGATION DEVELOPME ONSULTANT	CED FROM DATA.VIC.G	PROGRAM	AWTHORN 2020-09-23 CJS CJS DLG
PLAN SOURCED IN KEY MAP SOURCE STATE DATA SOUIL LIENT HAYBALL PTY ROJECT PUBLIC HOUS ITLE NVESTIGATION DEVELOPME ONSULTANT	RCED FROM DATA.VIC.G Y LTD SING RENEWAL ON LOCATION P NT LAYOUT - BIL	PROGRAM LAN WITH PRO LS STREET, H YYYY-MM-DD DESIGNED PREPARED	AWTHORN 2020-09-23 CJS CJS

APPENDIX A

Reports of Boreholes GA20-HAW-BH-01 to GA20-HAW-BH-12 Information Sheets

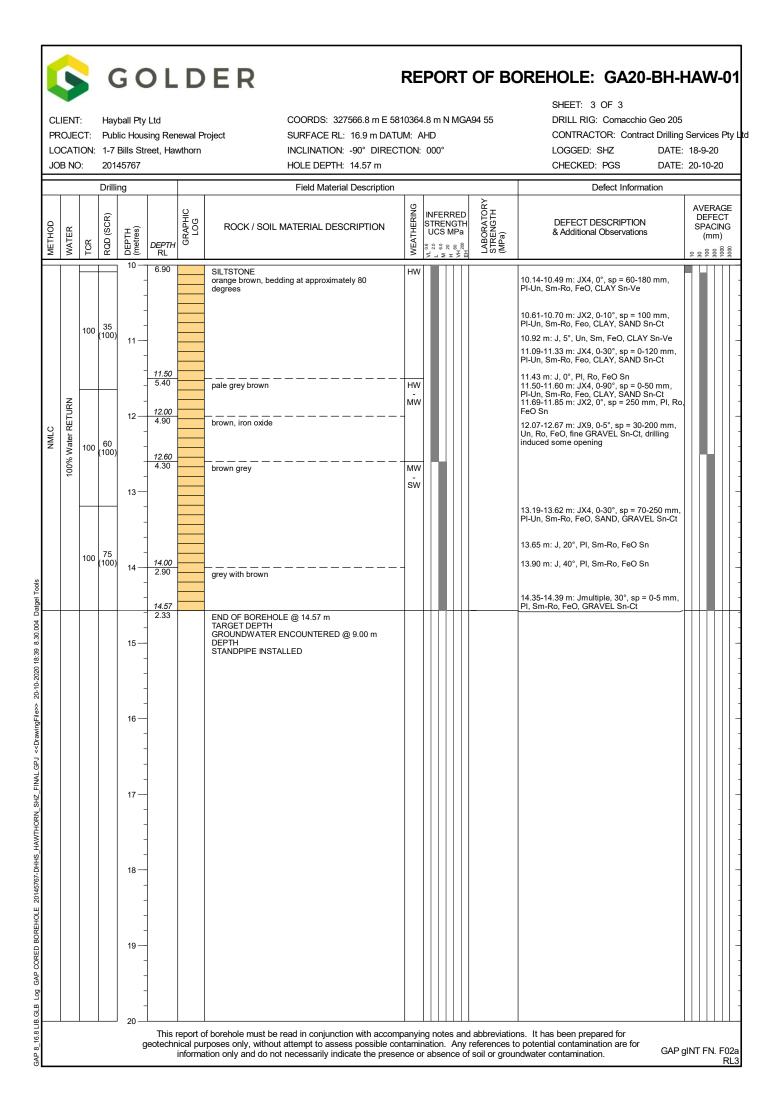
REPORT OF BOREHOLE: GA20-BH-HAW-01

 CLIENT:
 Hayball Pty Ltd

 PROJECT:
 Public Housing Renewal Project

 LOCATION:
 1-7 Bills Street, Hawthorn

 JOB NO:
 20145767


COORDS: 327566.8 m E 5810364.8 m N MGA94 55 SURFACE RL: 16.9 m DATUM: AHD INCLINATION: -90° DIRECTION: 000° HOLE DEPTH: 14.57 m SHEET: 1 OF 3 DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling Services Pty Ltd LOGGED: SHZ DATE: 18-9-20

CHECKED: PGS

DATE:	20-10-20

			Dril	ling		Sampling				Field Material Desc	riptio	n	
	METHOD	PENETRATION	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				-0	16.90	GA20-BH-HAW-01/2001/ 2801/2901 DS 0.00-0.10 m PID=0.1			CI	CLAY medium plasticity, brown, orange, yellow, trace fine to coarse grained, sub-angular to angular gravel	w < PL - w ~ PL	_	INFERRED FILL
				-	<u>0.50</u> 16.40	R = 1A GA20-BH-HAW-01/2002 DS 0.40-0.50 m PID=0.1 R = 1A			CI- CH	Sandy CLAY medium plasticity, white, yellow, red, fine to coarse grained sand		F - St	-
				1—	1.00 15.90 1.30 15.60 1.50	GA20-BH-HAW-01/2003 DS 0.90-1.00 m PID=0.1 R = 0A		····	СН	Sandy CLAY high plasticity, yellow, orange, fine to coarse grained sand pale grey and white	w < PL	St	INFERRED RESIDUAL SILTSTONE
	ADT			- - 2	<u>1.50</u> 15.40	GA20-BH-HAW-01/2004 DS 1.40-1.50 m PID=0.0 R = 0A GA20-BH01-001 SPT 1.50-1.80 m 6, 20/150mm HB			SC	Clayey SAND fine grained, orange, high plasticity clay	D - M	D	-
				-	2.50 14.40 2.90				CI	CLAY medium plasticity, brown, trace fine to coarse grained sand			-
		L-M		3—	14.00	GA20-BH01-002 SPT 2.90-3.25 m 12, 19, 11/50mm HB				pale grey and grey and orange, no sand			-
00 S	WB		100% Water RETURN	4							w < PL	н	-
37 8.30.004 Datgel	NMLC		100% Wat	-	<u>4.50</u> 12.40 5.00	GA20-BH01-003 SPT 4.50-4.95 m 5, 12, 24 N=36				orange with red, trace fine grained, sub-angular gravel	-		-
0-2020 18:	NN			5 —	5.30 5.30					pale brown	M	D,	-
GPJ < <drawingfile>> 20-10</drawingfile>				- - 6						GRAVEL fine - coarse grained, poorly graded, sub-angular, brown, orange, siltstone For Continuation Refer to Sheet 2	M		
VI HUKN_SHZ_FINAL				- - 7—									-
AGE 20145/6/-UHHS_HA				- 8									
OG GAP NON-CORED FULL P				- 9 - -									
AP 8_16.8 LIB.GLB L				- 10 —		echnical purposes only	y, w	/ithout	atten	n conjunction with accompanying notes and abbreviations. I pt to assess possible contamination. Any references to pot ssarily indicate the presence or absence of soil or groundwa	entia	l cont	amination are for
1													1120

Drilling Field Material Description Defect Information all gig gig gig gig gig gig gig gig gig g	PRO	ENT OJEC CATI 3 NC	CT: ON:	Pub 1-7		/ Ltd sing Rer reet, Ha		COORDS: 327566.8 m E 58 roject SURFACE RL: 16.9 m DATU INCLINATION: -90° DIREC HOLE DEPTH: 14.57 m	JM: A	HD	N MGA	94 55		18-9-20
B B	JOL		<i>.</i>											20-10-20
10 0	MEIHOU	WATER	TCR		DEPTH (metres)	DEPTH RL	GRAPHIC LOG		WEATHERING	STRE UCS	NGTH MPa	LABORATORY STRENGTH (MPa)	DEFECT DESCRIPTION & Additional Observations	AVERAG DEFECT SPACING (mm)
100 60 6- 100 60 6- 6.46 grey brown 100 60 7- 100 60 7- 100 60 7- 100 7- 8.00 100 8 8.00 100 8 8.00 100 8 8.00 100 8 8.00 100 8 8.00 100 8 8.00 100 100 100 100 8.40 pale grey brown 100 8.40 pale grey brown 100 100 10°, Pl.Sm.Ro, FeO, CLAY Sn-Ve 8.00 9- 9- 100 10°, Pl.Sm.Ro, FeO, CLAY Sn-Ve					2			SILTSTONE	HW				5.38-5.55 m: DBX2, sp = 170 mm	
100 60 (100) 7 -			100	60 (100)	6	6.46		pare brown, bedding at approximately 60 degrees					5.50 m: J, 0°, Un, Sm, CLAY Ve 5.63-5.96 m: JX3, 0°, sp = 110-200 mm, PI-Un, Sm-Ro, FeO, CLAY Sn-Ve 6.00-6.38 m: JX3, 0°, sp = 80-150 mm, Un,	
Image: Product of the second secon			100		7—			grey brown	-					
Image: participation of the state of the)% Water RETURN	100	40 (100)	8—	8.90		orange brown	HW				Sn-Ct 7.89 m: J, 0°, PI, Sm-Ro, FeO, CLAY Sn-Ve 8.00 m: J, 20°, PI, Sm-Ro, FeO, GRAVEL Sn-Ct, <20 mm 8.05-8.43 m: JX6, 0°, PI-Un, Sm-Ro, FeO,	
9.43 m: J, 0°, Un, Ro, FeO, GRAVEL Sn-Ct			100	55 (100)	9—			pale grey brown	MW				8.50 m: J, 10°, PI, Sm-Ro, FeO, CLAY Sn-Ve 8.73 m: J, 15°, Cv, Sm-Ro, FeO, GRAVEL Sn-Ct 8.86 m: J, 10°, PI, Sm, CLAY Ve 9.14 m: J, 15°, PI, Ro, FeO Sn 9.27 m: J, 5-20°, sp = 10-20 mm, PI-Un, Sm-Ro, FeO, GRAVEL Sn-Ct 9.43 m: J, 0°, Un, Ro, FeO, GRAVEL Sn-Ct	

REPORT OF BOREHOLE: GA20-BH-HAW-02

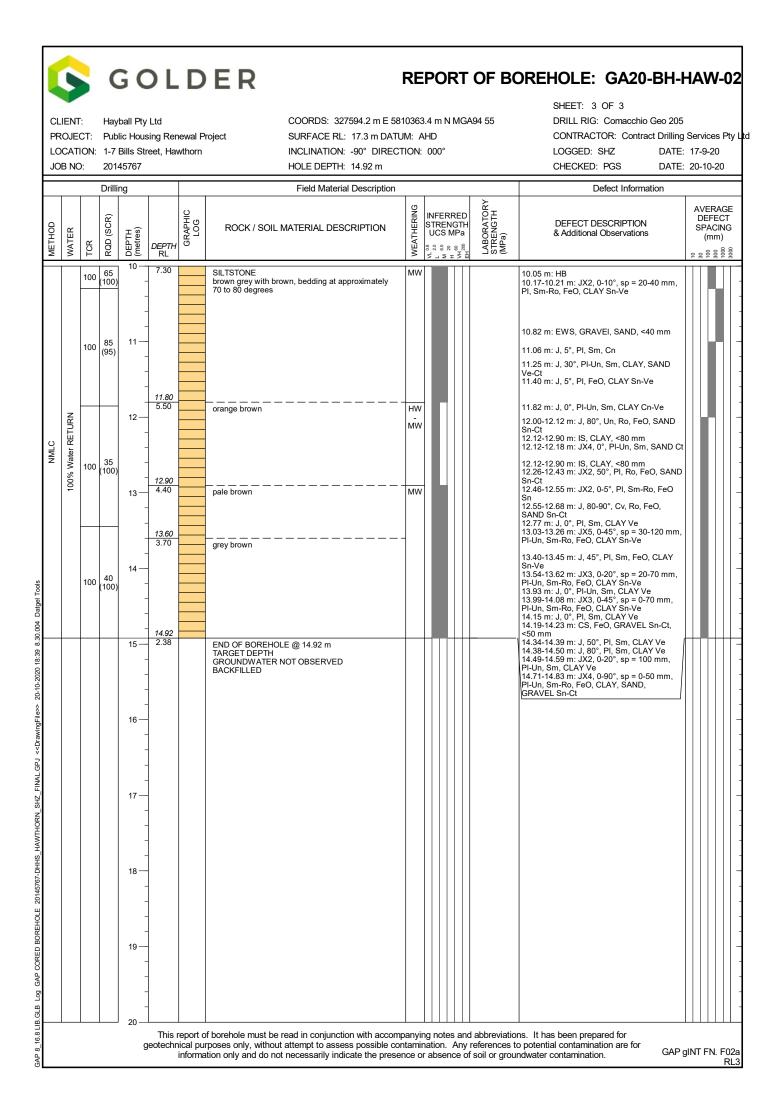
CHECKED: PGS

 CLIENT:
 Hayball Pty Ltd

 PROJECT:
 Public Housing Renewal Project

 LOCATION:
 1-7 Bills Street, Hawthorn

 JOB NO:
 20145767


COORDS: 327594.2 m E 5810363.4 m N MGA94 55 SURFACE RL: 17.3 m DATUM: AHD INCLINATION: -90° DIRECTION: 000° HOLE DEPTH: 14.92 m SHEET: 1 OF 3 DRILL RIG: Comacchio Geo 205

CONTRACTOR: Contract Drilling Services Pty Ltd LOGGED: SHZ DATE: 17-9-20

DATE: 17-9-20 DATE: 20-10-20

			Dril	ling		Sampling				Field Material Desc	iptio	n		
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F				-0	17.30	GA20-BH-HAW-02/2001 DS 0.00-0.10 m	-	\otimes	SC	Clayey SAND	M -	L-	INFERRED FILL	Τ
				-	0.30 17.00	PID=0.1 R = 1A		<u> </u>	CI	fine - coarse grained, brown, medium plasticity clay, trace fine to coarse grained, sub-angular to anguar gravel, trace glass	w	MD	INFERRED RESIDUAL SILTSTONE	
				-		GA20-BH-HAW-02/2002 DS 0.40-0.50 m		••••••••••••••••••••••••••••••••••••••		fragments and roots	w ~ PL -			
				-		PID=0.0 R = 0A		• • • •		medium plasticity, pale grey, fine to medium grained sand	w > PL			-
				1 —	<i>1.00</i> 16.30	GA20-BH-HAW-02/2003 DS 0.90-1.00 m		• • • •	СН			St		-
				-	10.50	PID=0.0 R = 0A		• •	Сп	Sandy CLAY high plasticity, orange and pale grey, fine to medium grained	w ~			-
				-	1.50	GA20-BH-HAW-02/2004				sand	PL			-
	ADT	L-M		-	15.80	DS 1.40-1.50 m PID=0.0			СН	CLAY high plasticity, orange and grey, with fine to medium grained				-
	∢			-		R = 0A GA20-BH02-001 SPT 1.50-1.95 m				sand, with fine to coarse grained, sub-rounded to sub-angular gravel				-
				2 —		7, 7, 12 N=19					w < PL	VSt		-
				_										
				-				[-]						-
				-	2.80 14.50					SILTSTONE				
				3 —	1.00	GA20-BH02-002				pale grey, medium plasticity clay to extremely weathered siltstone	w <	VSt -		-
				-		SPT 3.00-3.35 m 6, 9, 7/50mm HB				Siteone	PL	н		-
F										For Continuation Refer to Sheet 2				
				-										
slo				4 —										-
gel To				-										-
4 Dat				-										-
				-										-
:37 8				_										-
J20 1ε				5 —										
-10-2				-										-
>> 20				-										-
ngFile				-										-
Drawi				6—										-
× G				-										-
IAL.GI														
							1							
SL SF				7—			1							-
THOR				-			1							-
HAW				-										-
HHS				-										-
5767-C				8-										
2014£				0			1							
AGE				-			1							-
ULL P				-			1							-
RED F				-			1							-
Z-COF				9 —			1							-
P NOI				-			1							-
g GA							1							
с В				-										-
GAP 8_16.8 LIB.GLB_Log_GAP_NON-CORED FULL PAGE_20145767-DHHS_HAWTHORN_SHZ				10 —										
16.8										n conjunction with accompanying notes and abbreviations. I npt to assess possible contamination. Any references to pot			amination are for	
3AP 8					300					essarily indicate the presence or absence of soil or groundwa			nination GAP gINT FN. FC	01a RL3

PRC LOC		CT: ON:	Pub 1-7	ball Pty lic Hous Bills Str 45767	sing Rer		COORDS: 327594.2 m E 56 roject SURFACE RL: 17.3 m DAT INCLINATION: -90° DIREC HOLE DEPTH: 14.92 m	UM: A	HD	I MGA	94 55	SHEET: 2 OF 3 DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling S LOGGED: SHZ DATE: CHECKED: PGS DATE: 2	17-9-2	20
_			Drilli	ng			Field Material Description				~	Defect Information		
MEIHOD	WATER	TCR	RQD (SCR)	OEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFEF STREI UCS الالاح الالح	NGTH MPa	LABORATORY STRENGTH (MPa)	DEFECT DESCRIPTION & Additional Observations	SPA	ECT CING m)
		70 100 95 100	355 (50) 355 (100) 0 (95) 155 (85)		<u>3.40</u> 13.75 <u>5.47</u> 11.80		Continuation of Sheet 1 SILTSTONE pale grey, bedding indiscernible pale brown CORE LOSS SILTSTONE pale brown, bedding at approximately 70 to 80 degrees	XW HW HW MW HW				3.73 m: JX2, 60-70°, sp = 0-50 mm, Pl, Sm, CLAY, SAND Ve-Ct 3.80 m: J, 0°, Pl, Sm, Cn 3.87 m: J, 30°, Pl, Sm, Cn 4.17 m: DB 4.38-4.46 m: JX2, 0°, Pl-Un, Sm, CLAY Ve 4.65-5.00 m: J, 85°, Pl, Sm, CLAY Ve 4.65-5.00 m: J, 85°, Pl, Sm, CLAY Ve 4.90-5.47 m: J, 85°, Pl, Sm, CLAY Ve 5.07-5.27 m: JX4, 0°, sp = 50-110 mm, Pl, Sm, FeO Sn 5.50-5.80 m: J, 80-90°, Pl, Sm, CLAY Ve 5.66 m: J, 45°, Pl, Sm, CLAY Cn-Ve		
		100		- - 7 - - 8 - -	<u>6.95</u> 10.35 <u>7.90</u> 9.40		brown with brown grey	- <u>MW</u> - <u>MW</u>				6.17-6.40 m: J.% 0-10°, sp = 10-60 mm, PI-Un, Sm, FeO, CL4Y, SAND Sn-Ct 6.40-6.50 m: Jmultiple, 60-75°, sp = 0-40 mm PI-St, Sm, Cn 6.50-6.60 m: CS, GRAVEL, <100 mm 6.78 m: J, 10°, PI, Sm, CLAY Ve 6.89 m: J, 40°, PI, Sm, CLAY Ve 7.10 m: J, 10°, PI, Sm, CLAY Ve 7.11 m: J, 0°, PI-Un, Sm, FeO Sn 7.17 m: J.X2, 0-40°, sp = 0-20 mm, PI, Sm, FeO, CLAY Sn-Ve 7.40 cLAY Sn-Ve 7.40 cLAY Sn-Ve 7.40 cLAY Sn-Ve 7.40 cLAY Cn-Ve, disturbed by drilling 7.53 m: J, 30°, PI, Sm, FeO Sn 7.74 m: J, 10°, PI, Sm, FeO Sn 7.74 m: J, 0°, Un, Sm, FeO, SAND, GRAVEL Sn-Ct 8.10-8.30 m: J, 80°, PI, Sm, FeO Cn-Sn 8.10-8.30 m: J, 80°, PI, Sm, FeO Cn-Sn 8.35-8.60 m: JX3, 0°, sp = 110-150 mm, PI- Un, Sm, FeO, CLAY Sn-Ve		
			35 (100) 65 (100)	- 9 - - -	10.00							8.68-9.03 m: Jmultiple, 0.90°, sp = 0-60 mm, PI-Un, Sm, FeO Sn 9.14 m: J, 20°, PI, Sm, CLAY Cn-Ve 9.43 m: J, 15°, PI, Sm, FeO Sn 9.58 m: J, 50°, PI-Un, Sm, Cn 9.77 m: J, 0-10°, Un-St, Sm, Cn		

GAP 8_16.8 LIB.GLB Log GAP NON-CORED FULL PAGE 20145767-DHHS_HAWTHORN_SHZ_FINAL.GPJ <<DrawingFile>> 20-10-2020 18:37 8:30.004 Datget Tools

GOLDER

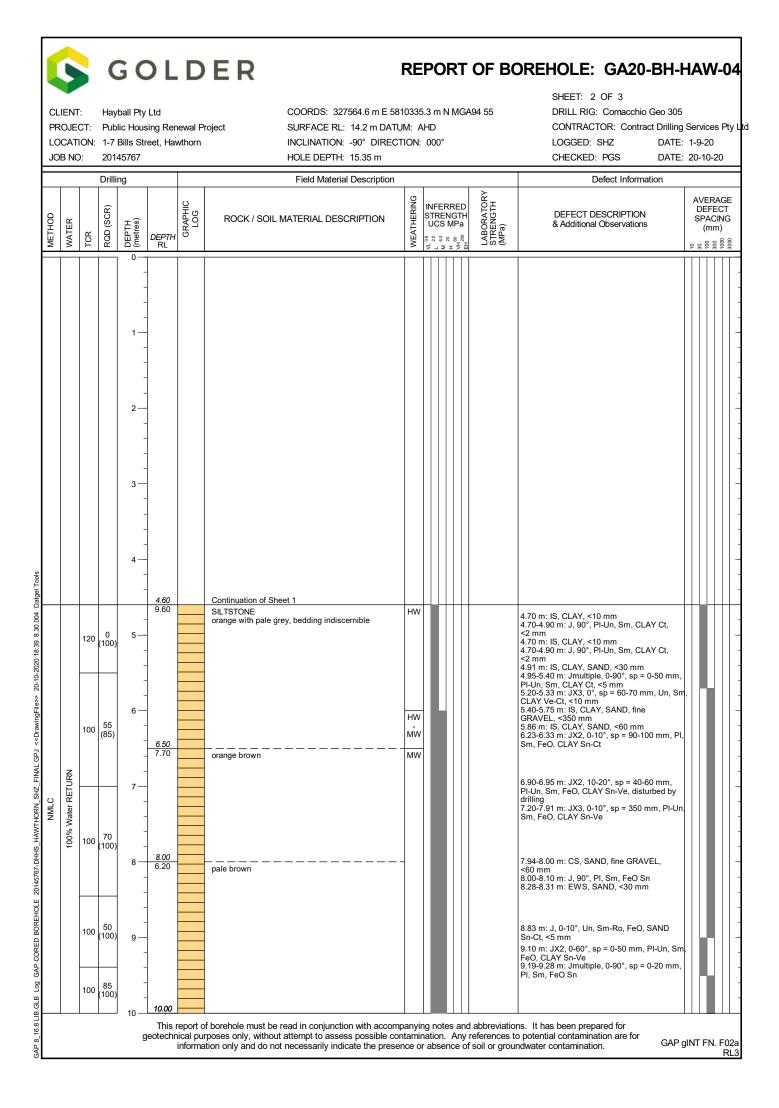
REPORT OF BOREHOLE: GA20-BH-HAW-03

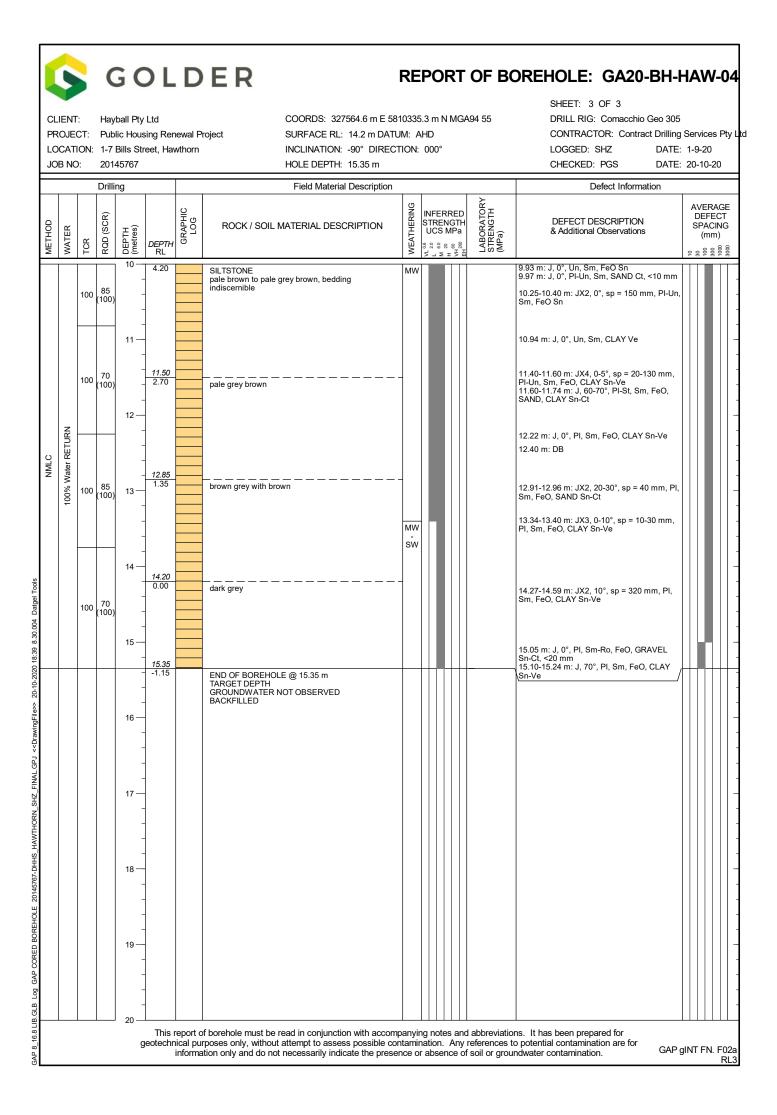
CLIENT: Hayball Pty Ltd PROJECT: Public Housing Renewal Project LOCATION: 1-7 Bills Street, Hawthorn JOB NO: 20145767

COORDS: 327631.9 m E 5810356.3 m N MGA94 55 SURFACE RL: 19.8 m DATUM: AHD INCLINATION: -90° DIRECTION: 000° HOLE DEPTH: 15.45 m

SHEET: 1 OF 3

DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling Services Pty Ltd LOGGED: SHZ DATE: 21-9-20 CHECKED: PGS DATE: 20-10-20


	Di	rilling		Sampling				Field Material Desc			
METHOD PENETRATION	WATER		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
ADT	1	0	19.80 0.40 19.40 <u>1.00</u> 18.80	$\begin{array}{l} \mbox{GA20-BH-HAW-03/2001}\\ \mbox{DS} 0.00-0.10\mbox{ m}\\ \mbox{PID=0.1}\\ \mbox{R}=1A\\ \mbox{GA20-BH-HAW-03/2002}\\ \mbox{DS} 0.40-0.50\mbox{ m}\\ \mbox{PID=0.1}\\ \mbox{R}=0A\\ \mbox{GA20-BH-HAW-03/2003}\\ \mbox{DS} 0.90-1.00\mbox{ m}\\ \mbox{PID=0.1}\\ \mbox{R}=0A \end{array}$			СІ	Sandy Gravelly CLAY medium plasticity, brown, fine to coarse grained, sub-angular to angular gravel, fine to coarse grained sand, with grass CLAY high plasticity, orange brown with red and grey, trace fine to coarse grained sand	w < PL PL - W ~ PL	F	INFERRED FILL INFERRED RESIDUAL SILTSTONE
M		22	<u>1.50</u> 18.30	GA20-BH-HAW-03/2004 DS 1.40-1.50 m PID=0.0 R = 0A GA20-BH03-001 SPT 1.50-1.77 m 7, 18/120mm HB				orange with pale grey, with fine to coarse grained, sub-angular gravel, trace fine to coarse grained sand For Continuation Refer to Sheet 2	w < PL	VSt - H	
		3									
			geol	echnical purposes only	v. w	/ithout	atten	n conjunction with accompanying notes and abbreviations. I npt to assess possible contamination. Any references to pot assarily indicate the presence or absence of soil or groundwa	entia	l cont	amination are for


PRC		CT: ON:):	Pub 1-7 2014	Bills Str 45767	Ltd sing Rer reet, Ha		INCLINATION: -90° DIRECT HOLE DEPTH: 15.45 m	'UM: Al	HD		1 94 55	SHEET: 2 OF 3 DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling LOGGED: SHZ DATE: CHECKED: PGS DATE:	21-9	-20
			Drilli	ng			Field Material Description				~	Defect Information		
	WATER	TCR	RQD (SCR)	OEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	ATHER	STR UC	ERRED ENGTH S MPa S s s S S ± 5 ±	LABORATORY STRENGTH (MPa)	DEFECT DESCRIPTION & Additional Observations	DE SP (ERAGE
		100	0 (<u>30</u>) 0	- - - - - - - - - - - - - - - - - -	<u>2.00</u> 17.80		Continuation of Sheet 1 SILTSTONE brown orange with brown, bedding indiscernible	xw				2.06-2.20 m: IS, CLAY, GRAVEL, <140 mm 2.20-2.25 m: J, 90°, PI, Sm, CLAY Ve 2.25-2.30 m: CS, <50 mm 2.32 2.30 m: L 50° PI Sm, CLAY Ve		
		20	(100) 0 (0)	- 3— - -	2.65 17.15 <u>3.67</u> 16.13		CORE LOSS SILTSTONE/BRECCIA	xw				2.32-2.39 m: J, 80°, PI, Sm, CLAY Ve 2.37-2.53 m: J, 85°, PI-Un, Sm, CLAY Ve 2.38-2.41 m: Jmultiple, 0-90°, PI, Sm, CLAY Cn-Ve 2.46-2.52 m: JX2, 0°, sp = 120 mm, PI, Sm, CLAY Cn-Ve 2.55-2.65 m: CS, <100 mm, disturbed by drilling		
		100	0 (0) 0 (75)	4 — - - 5 —	<u>4.60</u> 15.20		pale grey and orange and brown, angular gravel sized siltstone clasts within a weathered clay to extremely weathered siltstone mass SILTSTONE pale brown, bedding indiscernible	HW	ļ			4.65-4.68 m: CS, probably induced by drilling 4.74 m: J, 40°, PI, Sm, CLAY Cn-Ve		
		85	20 (85)	-	5.12 14.59 5.70		CORE LOSS SILTSTONE brown orange with brown, bedding indiscernible	HW XW				4.74-4.85 m: J, 85-90°, Un-St, Sm, Cn 4.74 m: J, 40°, PI, Sm, CLAY Cn-Ve 4.74-4.85 m: J, 85-90°, Un-St, Sm, Cn 4.75-4.80 m: J, St, Sm, probably induced by drilling 4.85-4.88 m: CS, GRAVEL, <30 mm 4.90-4.94 m: J, 70°, Un, Sm, CLAY, GRAVEL		
	100% Water RETURN	60	0 (50)	- 6 -	. 14.10 6.12 13.68 6.70		CORE LOSS SILTSTONE/BRECCIA pale brown	HW XW HW				Ct 5.03 m: J, 40°, Un, Sm, CLAY, SAND Ct 5.30 m: J, 45°, PI-Un, Sm, CLAY, SAND Ve-Ct 5.35 m: J, 0°, Un, Sm, GRAVEL Ct, drilling induced opening 5.50 m: J, 15°, PI, Sm, CLAY, GRAVEL Ve-Ct		
10001	100%	30	0 (20)	- 7— -	7.35 7.25		CORE LOSS SILTSTONE/BRECCIA	xw				5.55-5.70 m: J, 85°, PI, Sm, SAND, GRAVEL Ct, disturbed by drilling 6.12-6.20 m: J, 85°, PI, Sm, CLAY Ve, disturbed by drilling 6.19-6.25 m: JX2, 0-10°, sp = 60 mm, PI-Un, Sm, GRAVEL Ct 6.19-6.38 m: J, 80°, PI, Sm, CLAY Ct,		
		100	40 (100)	- - 8—	8.10		pale brown	ΗŴ				disturbed by drilling 6.19-6.25 m: JX2, 0-10°, sp = 60 mm, PI-Un, Sm, GRAVEL Ct 6.19-6.38 m: J, 80°, PI, Sm, CLAY Ct, disturbed by drilling		
	\leq	80	25 (45) 0	-	11.63 8.50 8.68 11.12		CORE LOSS SILTSTONE/BRECCIA pale grey brown, iron oxide CORE LOSS SILTSTONE/BRECCIA sola brown iron oxida	XW HW XW				6.40-6.47 m: JX3, 5°, sp = 30-40 mm, PI, Sm, CLAY Cn-Ve 6.54 m: EWS, SAND, <30 mm 6.59-6.70 m: EWS, CLAY, SAND, GRAVEL, <110 mm 7.38-7.43 m: IS, CLAY, <50 mm 7.47-7.77 m: JX4, 0-10°, Un, Sm-Ro, CLAY,		
	·	75	(55) 0 (60)	9— - -	<u>9.30</u> 10.50 <u>9.78</u> 10.02		pale brown, iron oxide	ΗŴ				SAND Ve-Ct, drilling induced opening 7.90 m: J, 45°, PI, Sm, CLAY Ve 8.07 m: J, 0°, PI-Un, Sm, CLAY Ve-Ct 8.17-8.23 m: EWS, CLAY, SAND, GRAVEL, <50 mm 8.40 m: J, 65°, PI, Sm, CLAY, fine quartz GRAVEL Ve-Ct 8.42-8.50 m: EWS, CLAY, <80 mm 8.80-8.95 m: JX5, 0-30°, sp = 0-60 mm, Un,		

PR LO	IENT OJEC CATI B NC	CT: ION:	Pub 1-7	ball Pty lic Hous Bills Str 45767	ing Rer		COORDS: 327631.9 m E 5 roject SURFACE RL: 19.8 m DA INCLINATION: -90° DIRE HOLE DEPTH: 15.45 m	rum: A	HD	A94 55		
			Drilli	ng			Field Material Description				Defect Information	
MEIHOU	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH UCS MPa	BORAT RENG a)	DEFECT DESCRIPTION & Additional Observations	AVERAGE DEFECT SPACING (mm)
		70	0 (60)	10 — - - -			SILTSTONE/BRECCIA pale grey and pale brown, iron oxide	xw HW			Sm-Ro, FeO, SAND, GRAVEL, CLAY Sn-Ct 9.02-9.06 m: IS, CLAY, SAND, GRAVEL, <40 mm 9.10-9.15 m: JX2, 60-70°, sp = 0-20 mm, Pl, Sm, CLAY Ve, disturbed by drilling 9.15-9.30 m: EWS, CLAY, <150 mm 9.84 m: J, 5°, Un, Sm, CLAY Ve 9.92 m: DB	
		100	15 (100)	11 — - -	<u>11.52</u> 8.28						10.08-10.11 m: JX2, 0-40°, sp = 0-30 mm, Ui Sm-Ro, FeO, CLAY Sn-Ve, disturbed by drilling 10.18-10.25 m: DBX2, sp = 70 mm 10.38 m: JX2, 0-60°, sp = 0-50 mm, PI-Un, Sm, SAND, GRAVEL Ct 10.46 m: DB	1 ,
2	100% Water RETURN	60	10 (45)	- 12 — -	<u>11.90</u> 7.90 12.50		SILTSTONE/BRECCIA pale brown and pale grey with brown, gravel to cobble sized siltstone clasts within a weathered clay to extremely weathered siltstone mass	xw Hw Xw			10.49-10.54 m: EWS, CLAY, SAND, <50 mm 10.66-10.85 m: EWS, <200 mm 11.05-11.13 m: JX3, 0-20°, sp = 30-50 mm, F Un, Sm, SAND Ct, disturbed by drilling 11.27-11.44 m: JX5, 0-10°, sp = 30-50 mm, Un, Sm, FeO, SAND, GRAVEL Sn-Ct	Ŋ_
	100% Wate	85	10 (75)	- - 13 — -	<u>12.67</u> 7.13		pale brown and pale grey with brown, gravel to cobble sized siltstone clasts within a weathered clay to extremely weathered siltstone mass	xw HW			12.04-12.18 m: DBX2 12.30-12.36 m: EWS, CLAY, GRAVEL, <60 mm 12.40-12.50 m: EWS, CLAY, <100 mm 12.84 m: J, 20°, PI-Un, Sm, CLAY, SAND Ve- Ct 13.08 m: J, 40°, PI, Sm, GRAVEL Ct, disturbe by drilling 13.12-13.15 m: J, 30°, PI, Sm, CLAY Ct,	
		60	30 (60)	- - 14 —	13.50 6.30 13.74 6.06		CORE LOSS SILTSTONE/BRECCIA	XW - HW			13.12-13.13 ft. 0, 30 , Pi, Sift, CLAY Ct, <30 mm 13.23 m: J, 0°, Un, Sm-Ro, FeO, GRAVEL Si Ct 13.29-13.40 m: Jmultiple, 45-55°, sp = 0-20 mm, Pl, Sm-Ro, FeO, GRAVEL Sn-Ct 13.44-13.50 mm 14.09-14.18 m: DBX3	٦-
		100	0 (75)	-	<u>14.60</u> 5.20 15.00		CORE LOSS				14.21-14.28 m: EWS, CLAY, SAND, <70 mm 14.30 m: J, 0°, PI-Un, Sm, CLAY, SAND Ct, < mm 14.34-14.38 m: J, 60°, PI, Sm, CLAY Ct, <40 mm	:5
		55	(35)		4.80 <u>15.45</u> 4.35		SILTSTONE/BRECCIA pale grey with brown, gravel to cobble sized siltstone clasts within a weathered clay to extremely weathered siltstone mass END OF BOREHOLE @ 15.45 m TARGET DEPTH	XW HW			14.39-14.52 m: Jmultiple, 0-90°, sp = 0-20 mm, PI, Sm, CLAY Cn-Ve 14.54-14.66 m: EWS, CLAY, <60 mm 15.00-15.06 m: J, 70°, PI, Sm-Ro, FeO, GRAVEL Sn-Ct 15.06-15.13 m: EWS, CLAY, GRAVEL, <70 mm	
				- 16 — - - - 17			GROUNDWATER ENCOUNTERED @ 8.40 m DEPTH STANDPIPE INSTALLED				15.20 m: J, 60°, PI, Sm, CLAY Ve 15.24 m: J, 0°, PI-Un, Sm, CLAY, SAND Ct, <10 mm 15.28-15.30 m: EWS, CLAY, SAND, GRAVE <20 mm 15.30-15.40 m: J, 0-90°, sp = 0-20 mm, PI, S CLAY Cn-Ve	
				17 — - - - 18 —								
				- 10								
				19 — - -								
				20 —								

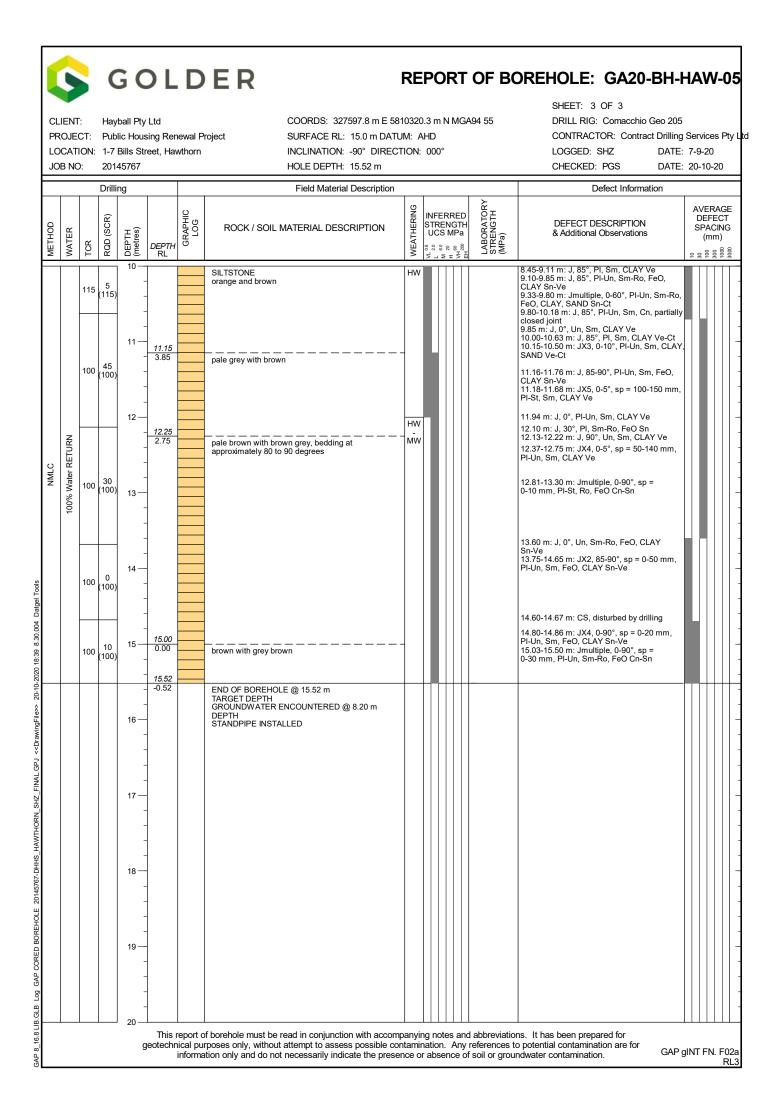
PR	ENT OJEC CATI 3 NC	CT: ON:	Public	s Street	d g Renewal Project i, Hawthorn		SUI	ORDS: 327564.6 m E 5810335.3 m N MGA94 55 RFACE RL: 14.2 m DATUM: AHD CLINATION: -90° DIRECTION: 000° LE DEPTH: 15.35 m	[(T: 1 OF 3 _ RIG: Comacchio Geo 305 IRACTOR: Contract Drilling Services F GED: SHZ DATE: 1-9-20 XED: PGS DATE: 20-10-20
	PENETRATION RESISTANCE	Dril	TH ires)	DEPTH	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	GROUP SYMBOL	Field Material Desc	MOISTURE CONDITION		STRUCTURE AND ADDITIONAL OBSERVATIONS
	L-M	>	 	RL 14.20 0.30 13.90	GA20-BH04/2001 DS 0.00-0.10 m PID=0.1 m R = 2A GA20-BH04/2002 DS 0.40-0.50 m PID=0.0 R = 0A GA20-BH04/2003		CI	FILL: Gravelly Sandy CLAY medium plasticity, brown, fine to coarse grained sand, fine to coarse grained, sub-rounded to sub-angular gravel, trace wood, glass, brick fragments FILL: Sandy CLAY medium plasticity, pale grey with pale brown, fine to medium grained sand	w < PL		INFERRED FILL
			- - 2 - - - -	13.20 <u>1.50</u> 12.70	DS 0.90-1.00 m PID=0.2 R = 0A GA20-BH04/2004 DS 1.40-1.50 m PID=0.0 R = 0A GA20-BH04-001 U63 1.50-1.90 m PP = 450-530 kPa		CI CI CI	Sandy CLAY medium plasticity, brown, fine to coarse grained sand, trace fine grained gravel, trace roots CLAY medium plasticity, orange and pale grey	w < PL - w ~ PL	St VSt - H	INFERRED RESIDUAL SILTSTONE
			3	<u>3.00</u> 11.20 <u>3.30</u> 10.90	GA20-BH04-002 SPT 3.00-3.45 m 2, 4, 9 N=13		-	orange and pale grey with grey trace fine to medium grained, sub-rounded to sub-angular gravel, trace fine to coarse grained sand	_w < PL	St - VSt	
			4	4.50	GA20-BH04-003 SPT 3.80-4.25 m 6, 8, 16 N=24					VSt	
			5		GA20-BH04-004 SPT 4.50-4.60 m 10/100mm HB			SILTSTONE orange and pale grey, extremely weathered siltstone For Continuation Refer to Sheet 2		Fb/	
			- 6 - -								
			7								
			8 - - -								
			9								

GAP 8_168 LIB.GLB Log GAP NON-CORED FULL PAGE 20145767-DHHS_HAWTHORN_SHZ_FINALGFD << DrawingFile>> 20-10-2020 18:37 8:30:004 Datget roots

REPORT OF BOREHOLE: GA20-BH-HAW-05

 CLIENT:
 Hayball Pty Ltd

 PROJECT:
 Public Housing Renewal Project


 LOCATION:
 1-7 Bills Street, Hawthorn

 JOB NO:
 20145767

COORDS: 327597.8 m E 5810320.3 m N MGA94 55 SURFACE RL: 15.0 m DATUM: AHD INCLINATION: -90° DIRECTION: 000° HOLE DEPTH: 15.52 m SHEET: 1 OF 3 DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling Services Pty Ltd LOGGED: SHZ DATE: 7-9-20 CHECKED: PGS DATE: 20-10-20

		Dri	lling		Sampling				Field Material Desc				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
				15.00	GA20-BH-HAW-05/ 2001/2801/2901 DS 0.00-0.10 m PID=0.1			CI	Sandy CLAY medium plasticity, brown, fine to coarse grained sand, with fine to coarse grained, sub-angular to angular gravel	w < PL		INFERRED FILL	-
			-	0.50 14.50	R = 1A GA20-BH-HAW-05/2002 DS 0.40-0.50 m PID=0.0 R = 1A			CI	Clayey SAND fine - medium grained, medium plasticity, brown, medium plactisity clay	w ~ PL	F - St		
ADT	L-M		1	<u>1.00</u> 14.00	GA20-BH-HAW-05/2003 DS 0.90-1.00 m PID=0.2 R = 0A GA20-BH05-001			CI- CH	CLAY medium - high plasticity, orange, red, grey, with fine to coarse grained sand, trace fine grained, sub-angular gravel, trace wood fragments		-		-
			2	<u>1.50</u> 13.50	SPT 1.00-1.45 m 2,3,5 N=8 GA20-BH-HAW-05/2004 DS 1.40-1.50 m PID=0.0 R = 0A			СН	CLAY high plasticity, orange and grey, trace fine grained sand		St	INFERRED RESIDUAL SILTSTONE	-
			-	2.80	GA20-BH05-002 SPT 2.50-2.95 m					w < PL			-
		RN	3	12.20	4, 5, 8 N=13			СН	Gravelly CLAY high plasticity, grey and orange and white, fine to medium grained, sub-angular gravel				-
WB		100% Water RETURN	-								St - VSt		-
		100% W	4	<u>4.00</u> 11.00	GA20-BH05-003 SPT 4.00-4.20 m 15, 5/50mm HB				SILTSTONE orange with yellow and pale grey, medium plasticity clay to extremely weathered siltstone		H - Fb		
			- 5	-					For Continuation Refer to Sheet 2				-
2			-										-
2			6-										-
			-										-
1			- 7-	-									-
			-										
			- 8-										-
			-										.
			- 9										.
- 			-										-
			- - 10-										-
				geol	echnical purposes only	y, wi	ithout	atten	n conjunction with accompanying notes and abbreviations. I npt to assess possible contamination. Any references to pol ssarily indicate the presence or absence of soil or groundwa	entia	l cont	amination are for nination GAP gINT FN. F	01a RL3
													<u> </u>

PR(LO(CT: ION:	Publ 1-7 2014	Bills Str 15767	Ltd sing Rer eet, Hav		INCLINATION: -90° DIRE	TUM: CTION	AHD		GA94 55	CHECKED: PGS DATE:	Services F 7-9-20 20-10-20
Т			Drilli	ng			Field Material Description				2	Defect Information	
	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING		ERRE RENGI S MP		DEFECT DESCRIPTION & Additional Observations	AVERAG DEFECT SPACING (mm)
NML(K 100% Water RETURN	60 80 45 100 100	0 (25) 0 (20) 0 (10) 0 (45) 0 (100) 5 (115)	- - - - - - - - - - - - - - - - - - -	4.73 10.27 5.00 10.00 5.45 9.55 6.10 6.20 8.80 6.60 8.40 7.10 7.80 7.85 7.15		Continuation of Sheet 1 SILTSTONE orange and brown CORE LOSS SILTSTONE orange and pale grey with brown CORE LOSS SILTSTONE orange and pale grey with brown CORE LOSS SILTSTONE orange and brown pale grey orange with brown					 4.73-4.83 m: EWS, CLAY, SAND, GRAVEL, (100 mm 4.83-5.00 m: Jmultiple, 0-90°, sp = 0-20 mm, Sm-Ro, FeO Sn, disturbed by drilling 5.45-5.55 m: CS, CLAY, GRAVEL, (100 mm, disturbed by drilling 5.60 m: J, 20°, PI, Sm-Ro, FeO, SAND Sn-Ct 5.64 m: JX2, 10-30°, sp = 0-20 mm, PI, Sm-Ro, CLAY, SAND, GRAVEL C, (-3 mm 5.80 mm 5.80 m: J, 0-60°, St, Sm-Ro, FeO, CLAY Sn-We, CLAY, SAND, GRAVEL C, (-3 mm 5.80 mm 5.80 m: J, 0-60°, St, Sm-Ro, FeO, CLAY Sn-CeO, CLAY Sn-Ve 5.80 m: J, 0°, PI, Sm-Ro, FeO, CLAY, SAND Sn-Ct, (-10 mm 6.00-6.05 m: Jmultiple, 10-80°, sp = 0-40 mm PI, Sm-Ro, FeO, CLAY Sn-Ve 6.05-6.10 m: EWS, CLAY, GRAVEL, (-30 mm 6.20-6.43 m: Jmultiple, 0-90°, sp = 0-30 mm, PI, Sm-Ro, FeO, CLAY Sn-Ve, disturbed by drilling 6.20-6.43 m: Jmultiple, 0-90°, sp = 0-30 mm, PI, Sm-Ro, FeO, CLAY Sn-Ve, disturbed by drilling 6.20-6.43 m: Jmultiple, 0-90°, sp = 0-30 mm, PI, Sm-Ro, FeO, CLAY Sn-Ve, disturbed by drilling 6.20-6.43 m: Jmultiple, 0-90°, sp = 0-30 mm, PI, Sm-Ro, FeO, CLAY Sn-Ve, disturbed by drilling 7.15 m: JX2, 0-10°, sp = 20-40 mm, PI, Sm-Ro, FeO, SALAY, SAND, GRAVEL 7.20-7.85 m: IS, CLAY, SO mm 8.05-8.22 m: J, 75°, PI-Un, Sm, SAND Ct, <5 mm 8.27 m: DB 	

20145767-DHHS_HAWTHORN_SHZ_FINAL.GPJ_<<Cbr/>avaingFile>> 20-10-2020 18:37_8:30.004_Datgel Tools

GAP NON-CORED FULL PAGE

g

GAP 8 16.8 LIB.GLB

GOLDER

REPORT OF BOREHOLE: GA20-BH-HAW-06

 CLIENT:
 Hayball Pty Ltd

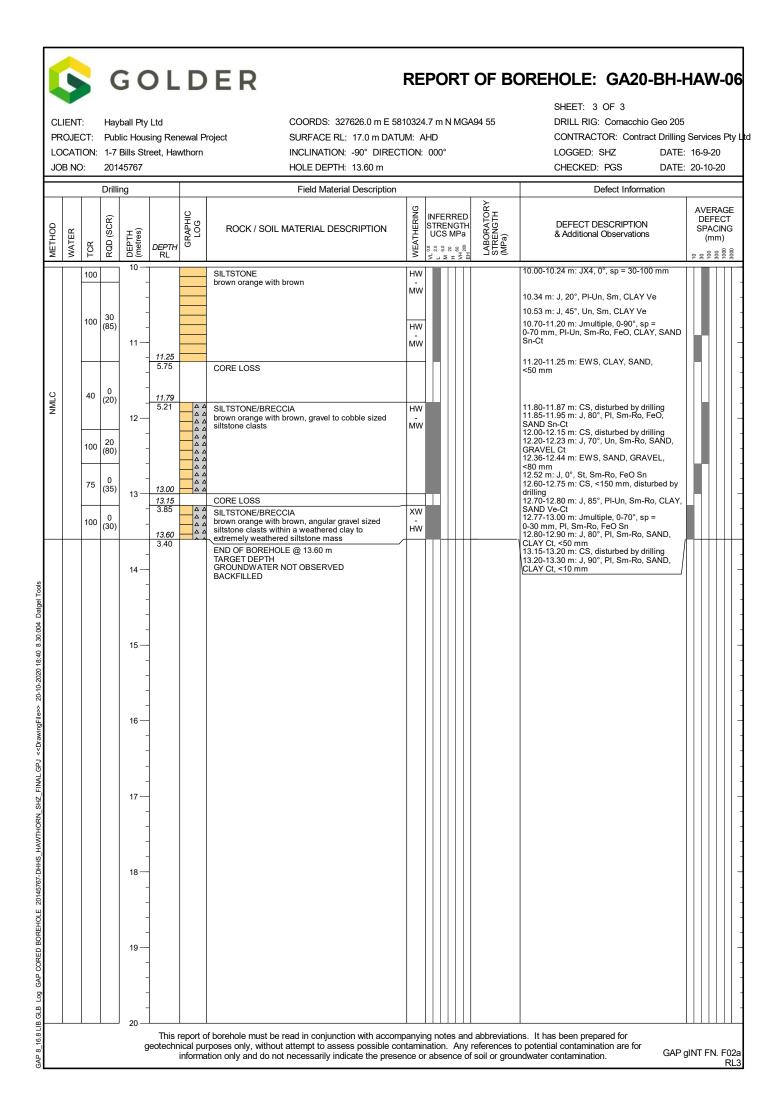
 PROJECT:
 Public Housing Renewal Project

 LOCATION:
 1-7 Bills Street, Hawthorn

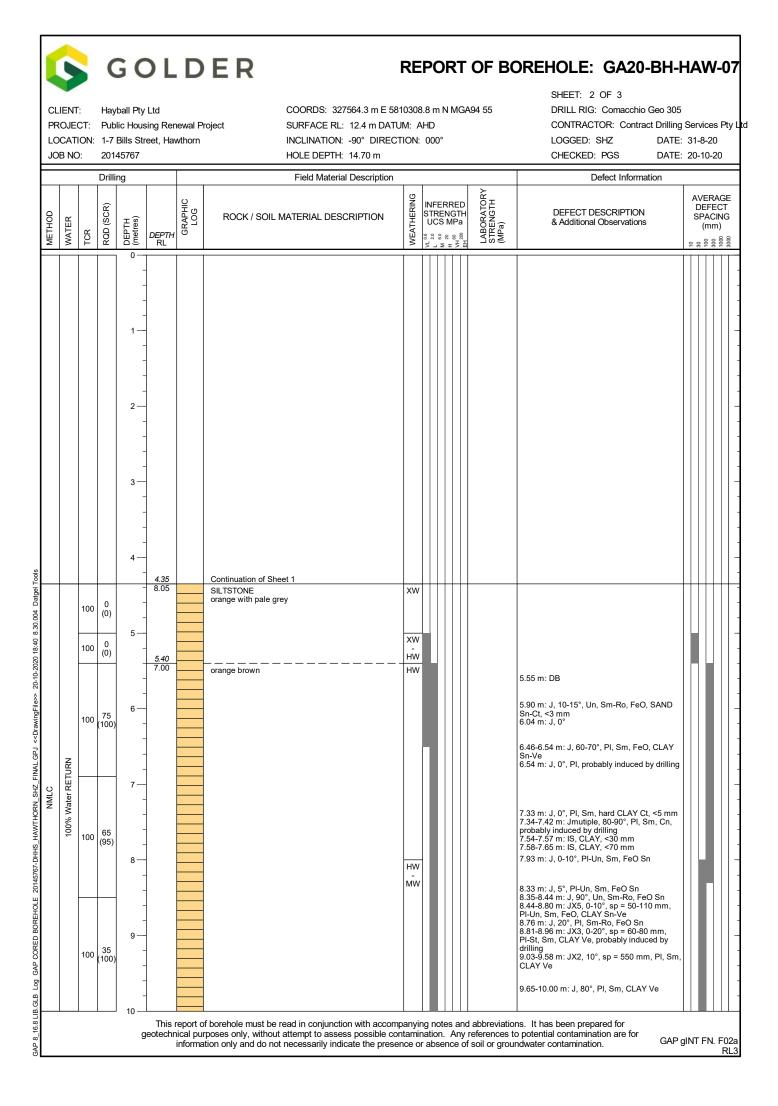
 JOB NO:
 20145767

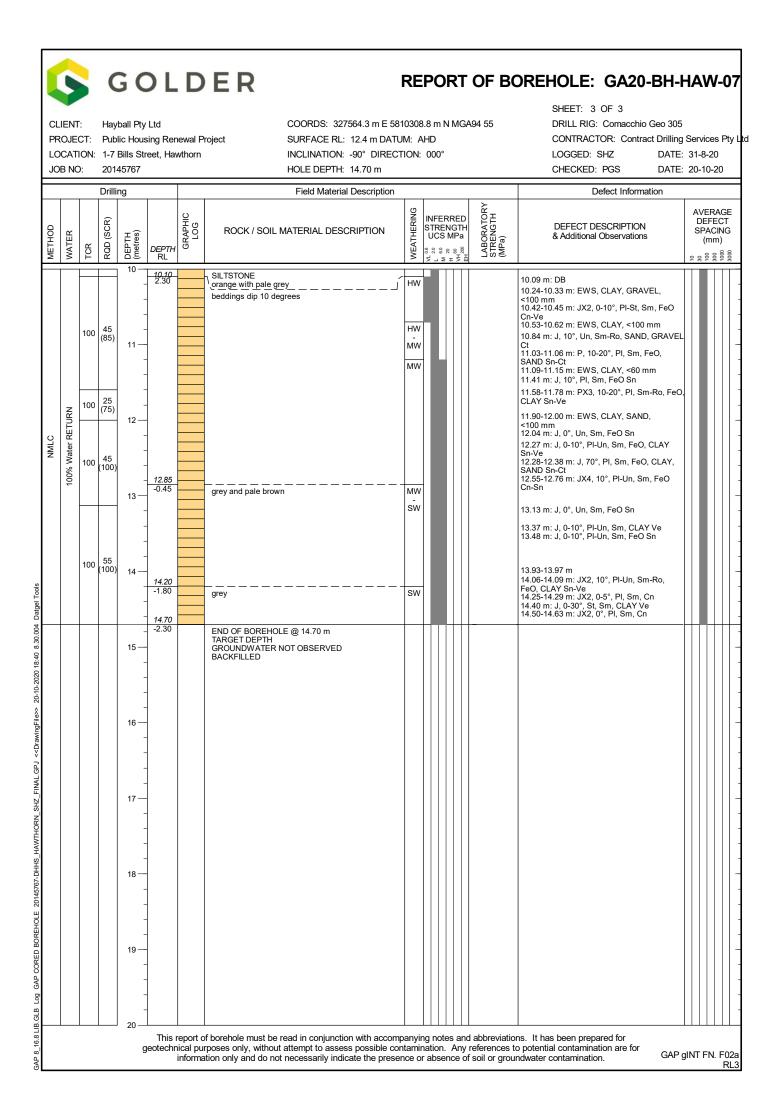
COORDS: 327626.0 m E 5810324.7 m N MGA94 55 SURFACE RL: 17.0 m DATUM: AHD INCLINATION: -90° DIRECTION: 000° HOLE DEPTH: 13.60 m SHEET: 1 OF 3 DRILL RIG: Comacchio Geo 205

 CONTRACTOR: Contract Drilling Services Pty Ltd


 LOGGED: SHZ
 DATE: 16-9-20

 CHECKED: PGS
 DATE: 20-10-20


RL3


Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY **FATION GROUP SYMBOI** RECOVERED STRUCTURE AND GRAPHIC LOG SAMPLE OR PENETRA METHOD SOIL/ROCK MATERIAL DESCRIPTION ADDITIONAL WATER DEPTH (metres) FIELD TEST OBSERVATIONS DEPTH RL -∩ GA20-BH-HAW-06/2001 17.00 CI **INFERRED FILL** GA20-BH-HAW-06/2001 DS 0.00-0.10 m PID=0.0 R = 1A GA20-BH-HAW-06/2002 DS 0.40-0.50 m PID=0.0 R = 0A GA20-BH-HAW-06/2003 DS 0.90-100 m Sandy Gravelly CLAY medium plasticity, brown, fine to coarse grained, sub-angular to angular gravel, fine to coarse grained sand F-St *0.30* 16.70 C⊦ INFERRED RESIDUAL SILTSTONE CLAY high plasticity, orange and grey, trace fine to medium grained sand St 1.00 DS 0.90-1.00 m PID=0.0 R = 0A 1 16.00 orange and pale grey, trace fine grained, sub-rounded to sub-angular gravel GA20-BH-HAW-06/2004 DS 1.40-1.50 m PID=0.0 R = 0A GA20-BH06-001 SPT 1.50-1.95 m 3, 7, 10 N=17 *1.50* 15.50 PL orange and pale grey with red, trace fine to medium grained, sub-angular to angular gravel ADT L-N 2.00 15.00 2 orange and pale grey, trace fine to coarse grained, sub-angular to angular gravel 2.30 VSt pale grey <u>3.00</u> 14.00 3 GA20-BH06-002 SILTSTONE SPT 3.00-3.43 m 8, 15, 16/130mm HB pale grey, medium plasticity clay to extremely weathered siltstone w < PL н For Continuation Refer to Sheet 2 4 5 6 7 8 9 10 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination. GAP gINT FN. F01a

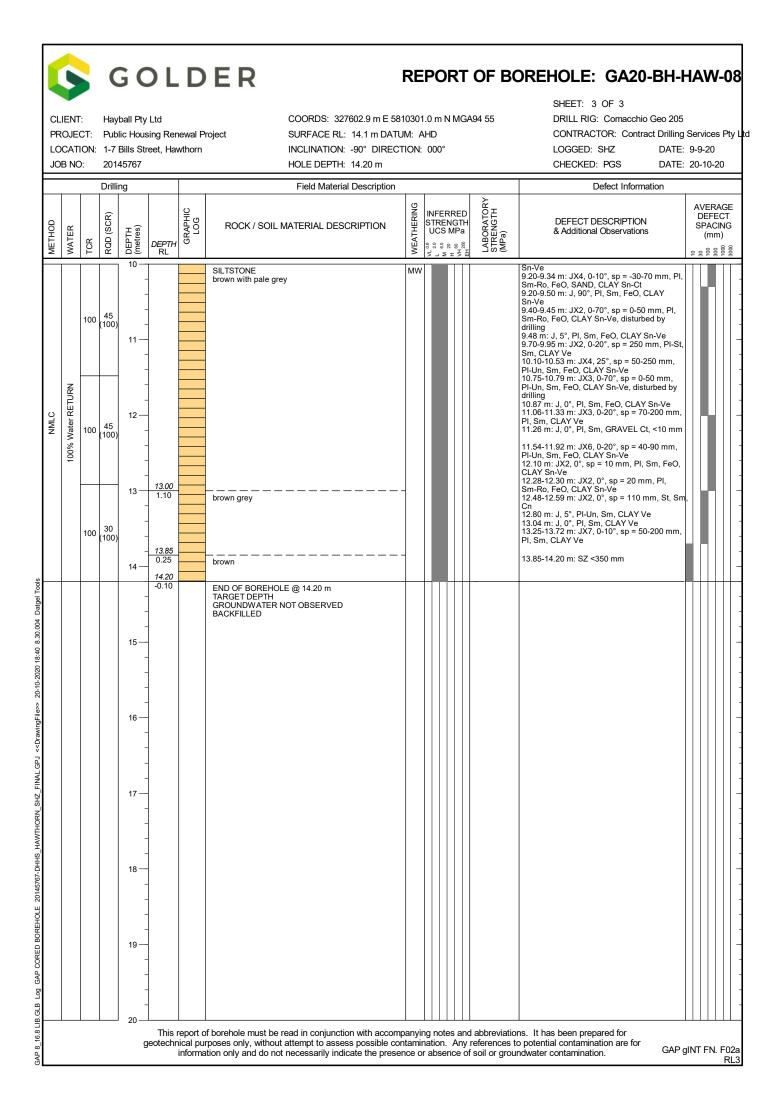
PR LO	ENT OJEC CATI 3 NO	CT: ION:	Pub 1-7		Ltd sing Rer reet, Ha		COORDS: 327626.0 m E 58 roject SURFACE RL: 17.0 m DATU INCLINATION: -90° DIRECT HOLE DEPTH: 13.60 m	JM: A	HD		MGA	.94 55	SHEET: 2 OF 3 DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling Services LOGGED: SHZ DATE: 16-9-20 CHECKED: PGS DATE: 20-10-2
			Drilli	ng			Field Material Description					~	Defect Information
MEINOU	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STF UC	ERF REN SN SN	GTH	LABORATORY STRENGTH (MPa)	DEFECT DESCRIPTION & AVERA DEFE SPACI (mm
		100	0 (50) 0 (65)		<u>3.50</u> 13.50 <u>3.72</u> 13.28 <u>4.30</u> 12.70		Continuation of Sheet 1 SILTSTONE/BRECCIA pale grey, angular gravel sized siltstone clasts within a weathered clay to extremely weathered \siltstone mass pale brown with pale grey and brown, Iron oxide CORE LOSS	xw xw Hw					3.70-3.75 m: CS, GRAVEL, <50 mm 3.75-3.87 m: J, 80°, PI, Sm-Ro, FeO, GRAVEL Sn-Ct 3.75-3.90 m: JX5, 30°, sp = 10-50 mm, PI, Sm-Ro, FeO Sn 3.75-3.87 m: J, 80°, PI, Sm-Ro, FeO, GRAVEL Sn-Ct
		30	0 (15) 0 (0)	- 5 - -	<u>5.20</u> 11.80 <u>5.60</u> 11.40 6.00		SILTSTONE/BRECCIA pale brown with pale grey and orange, angular gravel sized siltstone clasts within a weathered clay to extremely weathered siltstone mass, Iron oxide CORE LOSS	xw Hw					3.75*3.90 m: JX5, 30°, sp = 10-50 mm, Pl, Sm-Ro, FeO Sn 3.82*3.95 m: J, 80°, Pl, Sm-Ro, FeO Sn 4.05*4.15 m: IS, soft CLAY, <100 mm 4.16*4.30 m: CS, <150 mm, disturbed by drilling 5.20*5.35 m: CS, GRAVEL, <150 mm, disturbed by drilling 5.35*5.40 m: IS, CLAY, <50 mm 5.40*5.53 m: J, 80°, Pl, Sm-Ro, FeO Sn 5.41*5.53 m: J, multiple, 0.45°, sp = 0.20 mm, Pl, Sm-Ro, FeO, SAND Sn-Ct 5.53*5.60 m: CS, <70 mm, disturbed by
		20	(0) 0 (0)	6— - -	11.00 6.20 10.80 6.60		SILTSTONE/BRECCIA pale brown with pale grey and orange, angular gravel sized siltstone clasts within a weathered clay to extremely weathered siltstone mass CORE LOSS	xw					drilling
		100	30 (100)	- 7—	. 10.30 7.20 9.80		SILTSTONE/BRECCIA pale brown with brown, gravel to cobble sized siltstone clasts pale brown with brown and pale grey, Iron oxide	HW					6.93 m: J, 30°, PI-Un, Sm, CLAY Ve 7.03 m: J, 0°, Un, Sm-Ro, FeO, SAND, GRAVEL Sn-Ct, <20 mm, drilling induced
		0	0 (0)	-	7.75		CORE LOSS						opening 7.15 m: J, 0°, Un, Sm-Ro, FeO, SAND, GRAVEL Sn-Ct 7.75-7.80 m: J, 60°, PI-Un, Sm, CLAY, SAND
		100	0 (100)	8	9.20		SILTSTONE brown orange with brown and pale grey, Iron oxide	HW HW					Ve-Ct 7.92 m: J, 0°, Un, Sm, FeO, SAND Sn-Ct
		100	0 (90)	-	8.82			14144					8.30-8.38 m: JX2, 0°, sp = 80 mm, Un 8.56 m: J, 0°, Un, Sm, GRAVEL Ct, <10 mm
		60	15 (35)	9	8.18 9.08 7.92 9.50		CORE LOSS SILTSTONE/BRECCIA brown orange with brown, gravel to cobble sized siltstone clasts within a weathered clay to cextremely weathered siltstone mass	XW HW					8.63 m: J, 0°, Un, Sm-Ro, FeO, GRAVEL Sn-Ct, <30 mm, drill;ing induced opening 8.668-870 m: JX2, 40-50°, sp = 20-40 mm, PI, Sm-Ro, FeO Sn 8.76-8.82 m: EWS, CLAY, <50 mm 9.26 m: J, 45°, Un, Sm, CLAY Cn-Ve 9.34-9.46 m: EWS, CLAY, GRAVEL,
		100	20 (100)	-	7.50		SILTSTONE brown orange with brown	HW MW					9.34-9.46 m: EWS, CLAY, GRAVEL, <120 mm 9.50-9.84 m: JX5, 0-45°, sp = 0-150 mm, PI-Un, Sm-Ro, FeO, SAND Sn-Ct

CLIENT: PROJECT: LOCATION JOB NO:	Public : 1-7 Bil 20145	s Street	Renewal Project , Hawthorn			SUF INC	ORDS: 327564.3 m E 5810308.8 m N MGA94 55 RFACE RL: 12.4 m DATUM: AHD LINATION: -90° DIRECTION: 000° LE DEPTH: 14.70 m			T: 1 OF 3 RIG: Comacchio Geo 305 RACTOR: Contract Drilling Services P SED: SHZ DATE: 31-8-20 SKED: PGS DATE: 20-10-20
METHOD PENETRATION RESISTANCE WATER		DEPTH RL	Sampling SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	Field Material Desc			STRUCTURE AND ADDITIONAL OBSERVATIONS
D L-M	0 1 	12.40 0.20 12.20 0.50 11.90 1.00 11.40 1.50 10.90	GA20-BH07/2001 DS 0.00-0.10 m PID=0.0 GA20-BH07/2002 DS 0.40-0.50 m PID=0.0 R = 0A GA20-BH07/2003 DS 0.90-1.00 m PID=0.0 R = 0A GA20-BH07/2004 DS 1.40-1.50 m			СІСН	FILL: CLAY medium plasticity, brown, with fine to coarse grained sand, trace fine to medium grained, sub-rounded to sub-angular gravel, grass Sandy CLAY medium plasticity, brown, fine grained sand Sandy CLAY high plasticity, pale brown with orange, fine grained sand CLAY high plasticity, orange and pale grey, trace fine grained sand	w < PL PL - W ~ PL	F - St St	INFERRED FILL INFERRED RESIDUAL SILTSTONE
100% Water RETURN	2		PID=0.0 R = 0A GA20-BH07-001 U63 1.50-1.90 m PP = 400-450 kPa GA20-BH07-002 SPT 2.70-3.15 m 3, 4, 6 N=10 PP = 350->600 kPa			-		w < PL	VSt St - VSt	
	4	4.30	GA20-BH07-003 SPT 4.00-4.35 m 5, 10, 7/50mm HB				SILTSTONE	_	н	
							For Continuation Refer to Sheet 2			

REPORT OF BOREHOLE: GA20-BH-HAW-08

 CLIENT:
 Hayball Pty Ltd

 PROJECT:
 Public Housing Renewal Project


 LOCATION:
 1-7 Bills Street, Hawthorn

 JOB NO:
 20145767

COORDS: 327602.9 m E 5810301.0 m N MGA94 55 SURFACE RL: 14.1 m DATUM: AHD INCLINATION: -90° DIRECTION: 000° HOLE DEPTH: 14.20 m SHEET: 1 OF 3 DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling Services Pty Ltd LOGGED: SHZ DATE: 9-9-20 CHECKED: PGS DATE: 20-10-20

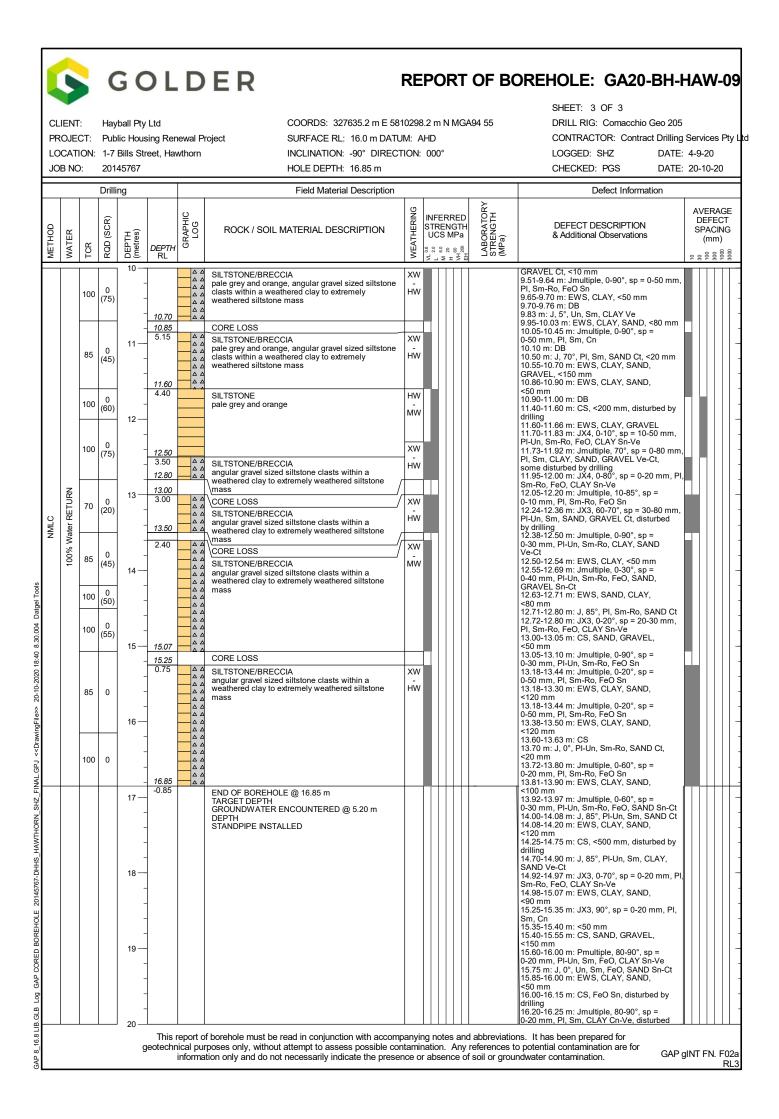
ATION NCE												
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
ADT		0	14.10 <u>0.90</u> 13.20	$\begin{array}{l} \label{eq:GA20-BH-HAW-08/2001} \\ DS 0.00-0.10 m \\ PID=0.1 \\ R=1A \\ GA20-BH-HAW-08/2002 \\ DS 0.40-0.50 m \\ PID=0.4 \\ R=1A \\ GA20-BH-HAW-08/2003 \\ DS 0.90-1.00 m \\ PID=0.0 \\ R=0A \\ GA20-BH-HAW-08/2004 \\ DS 1.40-1.50 m \\ PID=0.0 \\ R=0A \\ GA20-BH-HAW-08/2004 \\ DS 1.40-1.50 m \\ PID=0.0 \\ R=0A \\ GA20-BH-001 \\ SPT 1.50-1.95 m \\ HW/150mm, 2, 5 \\ N=7 \\ \end{array}$			СІ	FILL: Sandy CLAY medium plasticity, brown, fine to coarse grained sand, with fine to coarse grained, sub-angular to angualr gravel, trace, glass and wood fragments CLAY high plasticity, yellow, pale grey	w < PL	F - St	INFERRED FILL	
L-M	100% Water RETURN		<u>3.00</u> 11.00 <u>3.40</u> 10.70 <u>3.80</u> 10.30	GA20-BH08-002 SPT 3.00-3.45 m 4, 6, 9 N=15 GA20-BH08-003 SPT 3.80-4.12 m 11, 18, 5/20mm HB				pale grey, yellow with red, trace fine grained sand, trace fine to coarse grained, sub-rounded to sub-angular gravel/ pale grey	w < PL	St - VSt		-
								For Continuation Refer to Sheet 2				-

PR		CT: ION:	Pub 1-7 201	Bills Str 45767	Ltd sing Rer reet, Ha		INCLINATION: -90° DIF HOLE DEPTH: 14.20 m	DATUN	1: AI	HD		GA94 55	SHEET: 2 OF 3 DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling Services Pt LOGGED: SHZ DATE: 9-9-20 CHECKED: PGS DATE: 20-10-20
			Drilli	ng			Field Material Descript	tion				≻	Defect Information
MEIHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	N	ATHER	STRE	ERRE ENGI SMP SMP	a) a) a)	DEFECT DESCRIPTION & Additional Observations
							Continuation of Short 1						
_		100	0		5.18 8.92		Continuation of Sheet 1 SILTSTONE		xw				+ ++++
			(30) 0	-			pale brown	ŀ	xw				5.45-5.50 m: DB 5.50-5.85 m: J, 90°, PI, Sm, CLAY Ve
		100	(100)	-	5.85				нw				5.58 m J, 0°, Un, Sm, SAND Ct 5.64-5.82 m: JX5, 0-5°, PI-Un, Sm, CLAY,
		60 100	0 (45) 0 (125)	6— - -	6.00 8.10		CORE LOSS SILTSTONE brown with pale grey		HW				SAND Ve-Ct 5.82-5.85 m: CS, <30 mm, disturbed by drilling 6.00-6.04 m: CS, GRAVEL, <40 mm, disturbed by drilling 6.04-6.20 m: JX7, 0-30°, sp = 0-20 mm, PI, Sm, FeO, CLAY Sn-Ve
	RETURN	100	65 (100)	- 7— -	6.70 7.40		pale brown		нw MW				6.20-6.65 m: Jmultiple, 0-90°, sp = 0-20 mm, PI-Un, Sm, FeO, CLAY, SAND Sn-Ct 6.85 m: J, 0°, Un, Sm, CLAY Ve 7.05-7.14 m: DB, <90 mm
	100% Water RETURN	100	35 (100)	- 8 - 	-								7.50 m: DB 7.84 m: J, 0°, Un, Sm, CLAY Ve 7.90-8.00 m: J, 60°, PI, Sm, CLAY Ve 8.06 m: J, 0°, PI-Un, Sm, CLAY Ve 8.06-8.18 m: J, 60°, PI, Sm, CLAY, SAND Ve-Ct 8.06 m: J, 0°, PI-Un, Sm, CLAY Ve 8.15-8.30 m: J, 85°, PI, Sm, FeO, CLAY
		100	20 (100)	- 9 - - -									Sn-Ve, disturbed by drilling 8.23 m: J, 0°, PI-Un, Sm, CLAY Ve 8.30-8.33 m: JX2, 0-40°, sp = 0-30 mm, PI, Sm, CLAY Ve 8.45 m: J, 40°, PI, Sm, FeO Sn 8.62-8.92 m: JX4, 0-50°, sp = 60-130 mm, PI-Un, Sm, FeO, CLAY Sn-Ve 9.049-09 m: JX2, 0-70°, sp = 0-50 mm, PI-Un, Sm-Ro, FeO, CLAY Sn-Ve, disturbed by drilling 9.11 m: J, 0°, PI-St, Sm, Cn

REPORT OF BOREHOLE: GA20-BH-HAW-09

 CLIENT:
 Hayball Pty Ltd

 PROJECT:
 Public Housing Renewal Project


 LOCATION:
 1-7 Bills Street, Hawthorn

 JOB NO:
 20145767

COORDS: 327635.2 m E 5810298.2 m N MGA94 55 SURFACE RL: 16.0 m DATUM: AHD INCLINATION: -90° DIRECTION: 000° HOLE DEPTH: 16.85 m SHEET: 1 OF 3 DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling Services Pty Ltd LOGGED: SHZ DATE: 4-9-20 CHECKED: PGS DATE: 20-10-20

ŀ			Dril	ling		Sampling				Field Material Desci	iptic	on		_
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
				0 -	16.00	GA20-BH09/2001 DS 0.00-0.10 m PID=0.0 R = 1A GA20-BH09/2002 DS 0.40-0.50 m PID=0.1			CI	Sandy CLAY medium plasticity, brown, fine to coarse grained sand, with fine to coarse grained, sub-angular to angular gravel, trace roots, glass, wood fragments	w < PL w < PL -	F - St	INFERRED FILL	
	ADT			- 1 -	<u>15.20</u> <u>1.40</u> 14.60				СН	CLAY high plasticity, grey with orange	v ~ PL		INFERRED RESIDUAL SILTSTONE	-
				- - 2		SPT 1.00-1.45 m 3, 4, 6 N=10 GA20-BH09/2004 DS 1.40-1.50 m PID=0.0 R = 0A			-	orange and grey		St		-
				- - 3—	<u>2.50</u> 13.50	GA20-BH09-002 SPT 2.50-2.95 m 4, 7, 10 N=17			СН	Sandy CLAY high plasticity, pale grey with orange, fine to medium grained sand, with fine grained gravel	w < PL			-
0015	WB	L-M		- - 4	<u>4.00</u> 12.00	GA20-BH09-003			СН	CLAY		VSt		· ·
.3/ 0.30.00+ Laiga I					<u>4.50</u> 11.50	SPT 4.00-4.45 m 6, 12, 18 N=30			- - - -	high plasticity, orange and pale grey, trace fine to coarse grained sand, trace fine grained, dub-rounded to sub-angular gravel trace fine to coarse grained sand, trace fine to coarse grained, dub-rounded to sub-angular gravel	-			•
1LIG~~ 20-10-2020 10	U		$\mathbf{\Sigma}$	5 — - -	<u>5.50</u> 10.50 5.90	GA20-BH09-004 SPT 5.50-5.95 m 3, 4, 6			-	trace fine grained sand, trace fine to medium grained, sub-rounded to sub-angular gravel	w < PL - w ~			
	NMLC			6— - -	10.10	N=10			-	pale grey and orange with grey, with fine grained sand	PL	St		-
				- 7— -	7.00 9.00	GA20-BH09-005 SPT 7.00-7.30 m 12, 18/150mm HB			-	SILTSTONE pale grey, medium plasticity clay to extremely weathered siltstone	PL	н		- - .
				- - 8						For Continuation Refer to Sheet 2				· · ·
V-ODREV FOLL 1 NOL				- - 9—										
D.GLD LOU GAL NOI				- - - 10										
34F 0_10.4 E					geo	technical purposes only	y, w	vithout	atter	n conjunction with accompanying notes and abbreviations. I npt to assess possible contamination. Any references to pot assarily indicate the presence or absence of soil or groundwa	entia	l cont	amination are for	1a L3

	((GC	C	D	ER	RE	P	OR	RT	of Bo	OREHOLE: GA20-BH-HAW	-09
F	CLIEN PROJE LOCA ⁻ JOB N	ECT: TION:	Pub 1-7		Ltd sing Rer eet, Hav		COORDS: 327635.2 m E 58 Project SURFACE RL: 16.0 m DATU INCLINATION: -90° DIREC HOLE DEPTH: 16.85 m	JM: A	٨HD		ИGA	94 55	SHEET: 2 OF 3 DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling Services LOGGED: SHZ DATE: 4-9-20 CHECKED: PGS DATE: 20-10-20	-
L			Drilli	ng			Field Material Description						Defect Information	
МЕТНОП	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STF	ERR RENG S MI	ЭТН Ра	LABORATORY STRENGTH (MPa)	DEFECT DESCRIPTION & AVERA DEFECT DESCRIPTION & Additional Observations	CT NG I)
	100% Water RETURN	100	0 (0) (35)		7.34 8.66 8.00 7.94 8.70 7.30 8.90 7.10		CORE LOSS SILTSTONE/BRECCIA pale grey and orange and brown, recovered as coarse sand to sub-angular gravel sized clasts of siltstone in a clay matrix CORE LOSS SILTSTONE/BRECCIA pale grey and orange and brown, recovered as coarse sand to sub-angular gravel sized clasts of siltstone in a clay matrix CORE LOSS	XW					8.23-8.31 m: J, 80°, PI, Sm, CLAY Cn-Ve 8.29 m: DB 8.33 m: J, 0°, PI, Sm, FeO, SAND Sn-Ct 8.33 m: DB 8.31 m: DP, SAND, GRAVEL, <150 mm 8.55-8.62 m: P, 80°, PI-Un, Sm, SAND Ve-Ct,	
	100%	80 100	0 (45) 0 (75)	9 — - - -			pale grey and orange, angular gravel sized siltstone clasts within a weathered clay to extremely weathered siltstone mass	нw					8.55-8.62 m: P, 80 , PEO, SM, SAND Ve-Ct, disturbed by drilling 8.65-8.70 m: EWS, CLAY, SAND, <50 mm 8.90-9.00 m: HB 9.00-9.13 m: CS, SAND, GRAVEL, <130 mm 9.15-9.50 m: P, 80-85°, sp = 0-120 mm, PI, Sm, SAND Cn-Ct, disturbed by drilling 9.27-9.30 m: EWS, 0°, PI, Sm-Ro, SAND,	
		-		10 — g	eotechr	eport c lical pu	of borehole must be read in conjunction with accom proses only, without attempt to assess possible co ation only and do not necessarily indicate the prese	ntamii	natio	on. A	Anv r	eferences t	o potential contamination are for	F02a RL3

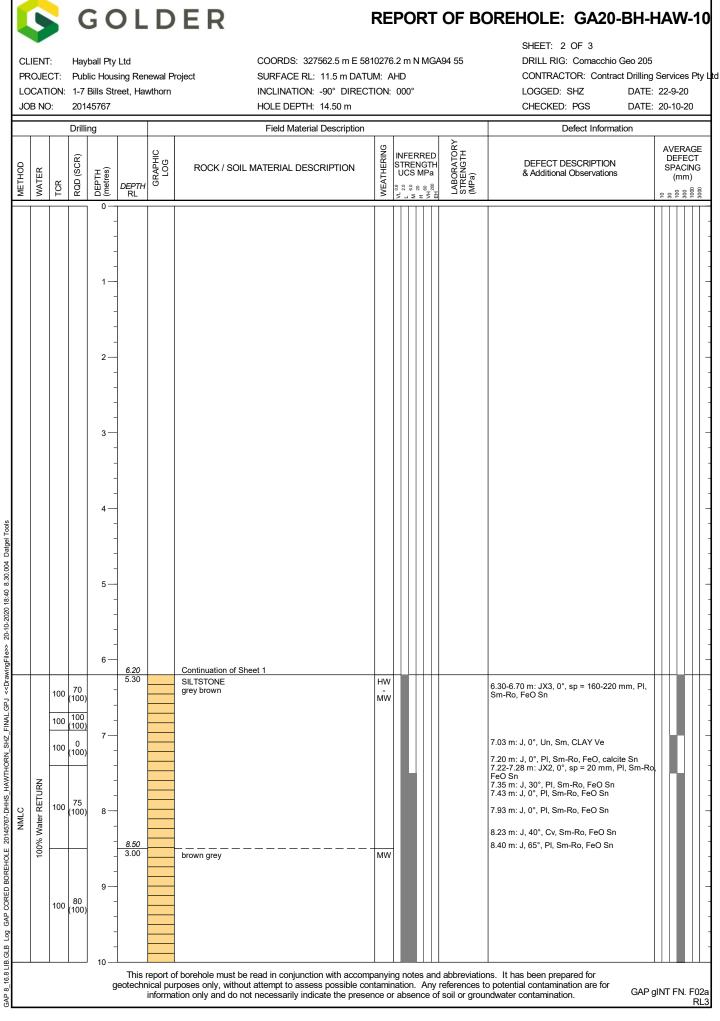
Pi LC		CT: ION:	Hay Pub 1-7	ball Pty lic Hous		newal P	roject SURFACE	327635.2 m E 58 RL: 16.0 m DATI ON: -90° DIREC TH: 16.85 m	10298 JM: A	.2 m N HD				4 OF 3 G: Comacchio CTOR: Contra : SHZ	Geo 205	Servi 4-9-2	ces P 20	
			Drilli	ng			Field Mat	erial Description						Defect Informa	tion			_
МЕТНОD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL D	ESCRIPTION	ATHER	INFER STREI UCS	NGTH MPa	LABORATORY STRENGTH (MPa)		DESCRIPTION al Observations		DE SP (ERAG EFECT ACINC (mm)	3
													by drilling 16.25 m 16.25-16.65 m: JX4 Un, Sm, SAND, fin 16.25 m 16.45-16.65 m: JX4 Un, Sm, SAND, fin 16.45-16.70 m: EV GRAVEL, <150 mn 16.75-16.85 m: EV GRAVEL, <100 mn	e GRAVEL Ct 4, 0°, sp = 100-1 9 GRAVEL Ct /S, CLAY, SAND n , Sm, CLAY Cn-\ /S, CLAY, SAND	50 mm,			
				ç	geotechr	ical pu	of borehole must be read in conjuit rposes only, without attempt to a tion only and do not necessarily	ssess possible co	ntamin	ation.	Any ı	references t	o potential contami	nation are for	GAP g	JINT F	FN. FC)2a 8L3

Г

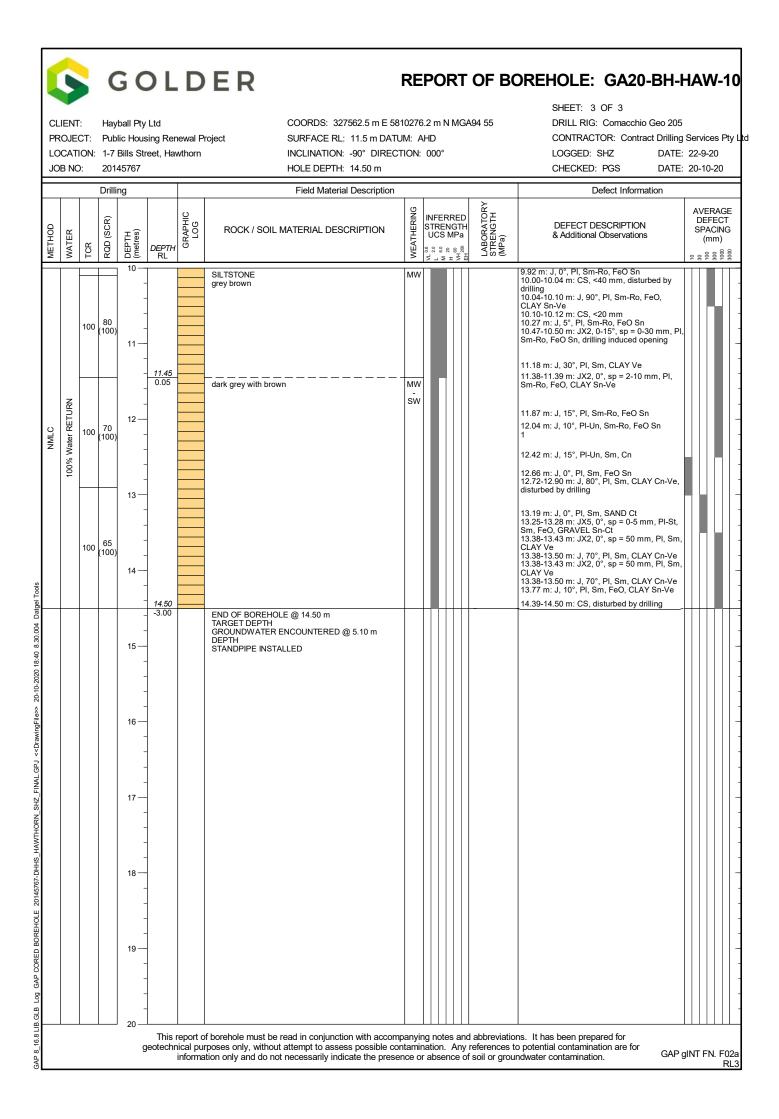
REPORT OF BOREHOLE: GA20-BH-HAW-10

 CLIENT:
 Hayball Pty Ltd

 PROJECT:
 Public Housing Renewal Project


 LOCATION:
 1-7 Bills Street, Hawthorn

 JOB NO:
 20145767


COORDS: 327562.5 m E 5810276.2 m N MGA94 55 SURFACE RL: 11.5 m DATUM: AHD INCLINATION: -90° DIRECTION: 000° HOLE DEPTH: 14.50 m SHEET: 1 OF 3 DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling Services Pty Ltd

LOGGED: SHZ CHECKED: PGS DATE: 22-9-20 DATE: 20-10-20

		Dril	ling		Sampling				Field Material Desc	riptio	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				11.50 0.50 11.00	GA20-BH-HAW-10/200 DS 0.00-0.10 m PID=0.4 R = 1A GA20-BH-HAW-10/200 DS 0.40-0.50 m PID=0.0			CL- CI CI	Sandy CLAY low - medium plasticity, brown, fine to coarse grained sand CLAY medium plasticity, brown, yellow, pale grey, with fine to	w < PL		INFERRED FILL
			- 1 -	1.00 10.50 1.50	R = 1A GA20-BH-HAW-10/200 DS 0.90-1.00 m PID=0.1 R = 1A GA20-BH-HAW-10/200				coarse grained sand, trace fine to coarse grained, sub-angular gravel, trace brick and wood fragments brown, black, orange, trace fine to coarse grained sand, trace fine to medium grained, sub-angualr gravel	w < PL - w ~ PL	F - St	-
ADT	L-M		- - 2	10.00	DS 1.40-1.50 m PID=0.0 R = 1A GA20-BH10-2001 SPT 2.00-2.45 m 5, 6, 3				red, yellow, brown, black, trace fine to coarse grained sand, trace fine to coarse grained, sub-rounded to sub-angular gravel	w < PL		
				2.50 9.00 2.80 8.70	N=9			CI- CH	plastic, metal fragments CLAY medium - high plasticity, brown grey, with fine grained sand	w < PL - w ~	St	INFERRED RESIDUAL SILTSTONE
			-	3.20 8.30	GA20-BH10-002 U63 3.20-3.60 m PP = 550->600 kPa			СН	CLAY high plasticity, orange and grey	PL	VSt - H	
			4	<u>4.50</u> 7.00	GA20-BH10-003							-
FINALUAY «CURAMIGNIE>> 20-10-2020 16:57 6.30.004 Datger tools		$\underline{\nabla}$	- 5		SPT 4.50-4.95 m 3, 5, 12 N=17					w < PL	VSt	-
surawingriless zu			- - 6	<u>6.00</u> 5.50					SILTSTONE		н	
			-						pale grey and orange, medium plasticity clay to extremely weathered siltstone For Continuation Refer to Sheet 2			
			7									
			- 8 -									-
			- - 9									-
GAP 8_10.8 LB. GLB LOB GAP NUN-LOKED FOLL PAGE 20149/07-DFHS_PAWI FILMEN_STR.			- - - 10									
10.10					echnical purposes only	y, w	/ithout	atten	n conjunction with accompanying notes and abbreviations. In to assess possible contamination. Any references to pot assarily indicate the presence or absence of soil or groundwa	entia	l cont	amination are for

GAP 8_16.8 LIB.GLB Log GAP CORED BOREHOLE 20145767-DHHS_HAWTHORN SHZ_FINAL.GPJ

GOLDER

REPORT OF BOREHOLE: GA20-BH-HAW-11

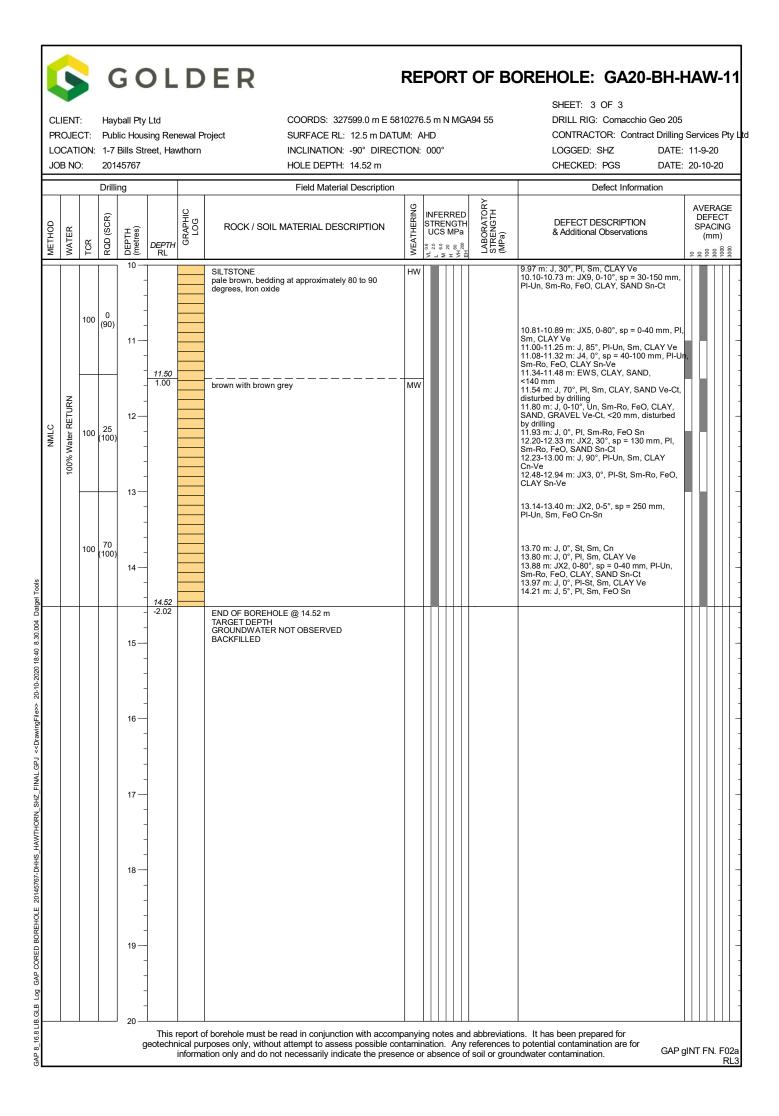
CHECKED: PGS

 CLIENT:
 Hayball Pty Ltd

 PROJECT:
 Public Housing Renewal Project

 LOCATION:
 1-7 Bills Street, Hawthorn

 JOB NO:
 20145767


COORDS: 327599.0 m E 5810276.5 m N MGA94 55 SURFACE RL: 12.5 m DATUM: AHD INCLINATION: -90° DIRECTION: 000° HOLE DEPTH: 14.52 m SHEET: 1 OF 3 DRILL RIG: Comacchio Geo 205

CONTRACTOR: Contract Drilling Services Pty Ltd LOGGED: SHZ DATE: 11-9-20

DATE: 20-10-20

			Dril	ling		Sampling				Field Material Desc	riptio	n	
		RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
τu	- L	M		0 1 2 	12.50 0.50 12.00 1.00 1.50 1.50 2.00 10.50	$\begin{array}{l} \label{eq:GA20-BH-HAW-11/2001} \\ DS 0.00-0.10 m \\ PID=0.3 \\ R=1A \\ GA20-BH-HAW-11/2002 \\ DS 0.40-0.50 m \\ PID=0.2 \\ R=1A \\ GA20-BH-HAW-11/2003 \\ DS 0.90-1.00 m \\ PID=0.1 \\ R=1A \\ GA20-BH-HAW-11/2004 \\ DS 1.40-1.50 m \\ PID=0.1 \\ R=1A \\ GA20-BH-HAW-11/2004 \\ DS 1.40-1.50 m \\ PID=0.1 \\ R=1A \\ GA20-BH-HAW-11/2004 \\ DS 1.50-1.95 m \\ 11,15,14 \\ N=29 \end{array}$			CI- CH	Sandy CLAY medium plasticity, brown, dark brown, fine to coare grained sand, trace fine to coarse grined gravel, sub-angular to angular CLAY medium - high plasticity, pale grey, brown, grey, orange, with fine to coarse grained sand brown with orange and pale grey orange and pale grey with brown, trace fine to medium grained sand, with fine to coarse grained, sub-angular gravel SILTSTONE pale grey, yellow, medium plasticity clay to extremely	- w < PL	St - VSt	INFERRED FILL - - - - - - - - - - - - - - - - - - -
GAP 8_16.8 LIB.GLB Log GAP NON-CORED FULL PAGE 20145767-DHHS_HAWTHORN_SHZ_FINAL.GPJ < <drawingfile>> 20-10-2020 18:38 8.30.004 Datgel Tools</drawingfile>						GA20-BH-HAW-11/2005 -BH11-002 R = 0A SPT 2.75-2.80 m 5/50mm HB				For Continuation Refer to Sheet 2	W < PL	VSt -	
P 8_16.8 LIB.GLB Log GAP NON-(- - - 10		echnical purposes only	y, w	ithout	atten	n conjunction with accompanying notes and abbreviations. npt to assess possible contamination. Any references to po ssarily indicate the presence or absence of soil or groundwa	tentia	l cont	amination are for gination GAP gINT FN. F01a
В											5		RL3

0 0	clien Proje Locat Job N	CT: ION:	Pub 1-7		Ltd sing Rer eet, Hav		roject COORDS: 327599.0 m E 581 SURFACE RL: 12.5 m DATU INCLINATION: -90° DIRECT HOLE DEPTH: 14.52 m	M: A	HD		494 55	SHEET: 2 OF 3 DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling Services F LOGGED: SHZ DATE: 11-9-20 CHECKED: PGS DATE: 20-10-20
0 0		-	Drilli	ng			Field Material Description					
1 1	WATER	Image: Second state state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second							STRE UCS	NGTH MPa	LABORATORY STRENGTH (MPa)	DEFECT DESCRIPTION & Additional Observations (mm)
100 65 7.80 100 65 7.80 100 4.70 pale brown, Iron oxide 8 7.81 m: J, 0°, PI, Sm, CLAY Ve 7.93-8.06 m: J, 70°, Un, Ro, FeO, SAND Sn-Ro, FeO, SAND 8 - </th <th>NMLC ater RETURN</th> <th>95</th> <th>(100) 0 (40) 0 (95) 55</th> <th>2 2 3 3 5 </th> <th>9.63 3.60 8.90 4.05 4.16 8.34</th> <th></th> <th>SILTSTONE pale brown, bedding indiscernible CORE LOSS SILTSTONE pale brown with pale grey CORE LOSS SILTSTONE pale brown, bedding at approximately 80 to 90 degrees, Iron oxide</th> <th>xw</th> <th></th> <th></th> <th></th> <th>probably induced and disturbed by drilling 3.28 m: DB 3.40 m: DB 4.16-5.70 m: JX2, 80-90°, sp = 0-60 mm, PI-Un, Sm-Ro, FeO Cn-Sn 4.27-5.70 m: Jmultiple, 0-10°, sp = 5-200 mm, PI-St, Sm, FeO, CLAY Sn-Ve, some disturbed and opened by drilling 5.77-5.80 m: JX2, 0°, sp = 30 mm, PI, Sm, CLAY Ve 6.05 m: J, 30°, PI-Un, Sm, CLAY Ve 6.11-6.21 m: JX2, 0°, PI, Sm, Cn</th>	NMLC ater RETURN	95	(100) 0 (40) 0 (95) 55	2 2 3 3 5 	9.63 3.60 8.90 4.05 4.16 8.34		SILTSTONE pale brown, bedding indiscernible CORE LOSS SILTSTONE pale brown with pale grey CORE LOSS SILTSTONE pale brown, bedding at approximately 80 to 90 degrees, Iron oxide	xw				probably induced and disturbed by drilling 3.28 m: DB 3.40 m: DB 4.16-5.70 m: JX2, 80-90°, sp = 0-60 mm, PI-Un, Sm-Ro, FeO Cn-Sn 4.27-5.70 m: Jmultiple, 0-10°, sp = 5-200 mm, PI-St, Sm, FeO, CLAY Sn-Ve, some disturbed and opened by drilling 5.77-5.80 m: JX2, 0°, sp = 30 mm, PI, Sm, CLAY Ve 6.05 m: J, 30°, PI-Un, Sm, CLAY Ve 6.11-6.21 m: JX2, 0°, PI, Sm, Cn
9 — Sn-Ct	100% V	100	65 (100)	- - - - 8 - - - -			pale brown, Iron oxide	-				Sm-Ro, FeO Sn 7.02 m: J, 0°, Pl-Un, Sm-Ro, FeO Sn 7.81 m: J, 0°, Pl, Sm, CLAY Ve 7.93-8.06 m: J, 70°, Un, Ro, FeO, SAND Sn-Ct 8.25-9.00 m: J, 80-90°, Pl-Un, Sm, CLAY Cn-Ve 8.60-8.86 m: JX5, 0-10°, Un, Sm-Ro, FeO, CLAY Sn-Ve 8.70-8.80 m: J, 80°, Un, Sm-Ro, FeO, SAND

PR LO		CT: ION:	Public 1-7 Bil	ls Stree	d g Renewal Project t, Hawthorn			SUR	ORDS: 327649.7 m E 5810276.0 m N MGA94 55 RFACE RL: 15.9 m DATUM: AHD FLINATION: -90° DIRECTION: 000°		DRILI CONT LOGO	ET: 1 OF 3 L RIG: Comacchio Geo 205 IRACTOR: Contract Drilling Service: GED: SHZ DATE: 14-9-20
JO	B NC		20145	/6/	Sampling			HU	LE DEPTH: 17.20 m Field Material Des			CKED: PGS DATE: 20-10-2
MEIHUU	PENETRATION RESISTANCE	-	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0 - - -	15.90 0.50 15.40 1.00	GA20-BH-HAW-12/2001 DS 0.00-0.10 m PID=0.0 R = 2A GA20-BH-HAW-12/ 2002/2802/2902 DS 0.40-0.50 m PID=0.0 R = 1A			CL- CI	Gravelly Sandy CLAY low - medium plasticity, brown, fine to coarse grained sand, fine to coarse grained, sub-angular to angular gravel 			INFERRED FILL
			1— - -	14.90	GA20-BH-HAW-12/2003 DS 0.90-1.00 m PID=0.1 R = 1A GA20-BH-HAW-12/2004 DS 1.40-1.50 m PID=0.0 R = 1A			CI	CLAY medium plasticity, brown with orange and yellow and pale grey, trace fine to coarse grained sand		F - St	
2			2— - - -	<u>2.50</u> 13.40	GA20-BH12-001 SPT 2.50-2.95 m 2, 1, 1 N=2			****	grey and orange			
			3— - -	3.80	N=2						S	
	L-M	Y	4	12.10	GA20-BH12-002 U63 4.00-4.40 m PP = 150-250 kPa				Sandy CLAY low plasticity, brown, grey, fine grained sand	w < PL - w ~ PL	St - VSt	INFERRED RESIDUAL SILTSTONE
1		100% Water RETURN	5— - -	<u>5.50</u> 10.40	GA20-BH12-003 SPT 5.50-5.95 m 3, 3, 5			СН	CLAY high plasticity, orange and pale grey with grey, trace fine to medium grained, rounded sand			
		100	6— - -		N=8			-		w < PL	St	
		0% Water RETURN	7	7.00 8.90	GA20-BH12-004 SPT 7.00-7.45 m 4, 6, 7 N=13			- - - -	orange and pale grey			
		0							For Continuation Refer to Sheet 2			
			9— - - -									

				C	GC	C	D	ER	RE	PC	DR	T (of Bo	SHEET: 2 OF 3	łA	W	-12
	CLIENT: Hayball Pty Ltd COORDS: 327649.7 m E 581027 PROJECT: Public Housing Renewal Project SURFACE RL: 15.9 m DATUM: LOCATION: 1-7 Bills Street, Hawthorn INCLINATION: -90° DIRECTION JOB NO: 20145767 HOLE DEPTH: 17.20 m									HD		1GA9	94 55	DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling LOGGED: SHZ DATE:			
	Drilling Field Material Description										<u> </u>	Defect Information					
	MEIHOU		2 2 2	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	ATH	STR	S MP	TH Pa	LABORATORY STRENGTH (MPa)	DEFECT DESCRIPTION & Additional Observations	D SI	PAC (mn	ING
8 LIB.GLB L0g GAP CUT	End, where PETLIPM not, where PETLIPM		30	0 (85) 0 (10) 15 (85) 15 (70)		8.00 7.85 8.40 7.40 9.00 6.90 9.48 6.35		SILTSTONE/BRECCIA	HW HW HW AW				abbreviation	8.05-8.40 m: Jmultiple, 0-90°, sp = 0-30 mm, PI-Un, Sm-Ro, FeO, CLAY Sn-Ve, disturbed by drilling 8.50-8.60 m: CS, GRAVEL, SAND, <100 mm 8.87-8.77 m: CS, GRAVEL, SAND, <100 mm 8.85-8.90 m: IS, CLAY, <50 mm 8.85-8.90 m: IS, CLAY, <50 mm 8.85-8.90 m: IS, CLAY, <50 mm 8.80-9.23 m: Jmultiple, 0-60°, sp = 0-20 mm, PI, Sm-Ro, FeO, Ch-Sn 9.24-9.38 m: P, 50°, sp = 0-40 mm, PI, Sm, FeO, CLAY, GRAVEL Cn-Ct 9.38-9.48 m: EWS, <100 mm 9.60-9.75 m: JX2, 40°, sp = 150 mm, PI-Un, Sm-Ro, FeO, CLAY Sn-Ve ms. It has been prepared for			
					g	eotechr	ical pu	of borehole must be read in conjunction with accomp rposes only, without attempt to assess possible con ation only and do not necessarily indicate the present	ntamir	atior	η. A	ny re	eferences to	o potential contamination are for	INT	FN.	F02a RL3

PF LC		CT: ION:	Pub		Ltd sing Rer reet, Ha		COORDS: 327649.7 m E 58 roject SURFACE RL: 15.9 m DATU INCLINATION: -90° DIREC HOLE DEPTH: 17.20 m	JM:	AHD	1GA94 55		
			Drilli	ng			Field Material Description	-	1		Defect Information	
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRE STRENG UCS MF	ABORA TRENG MPa)	DEFECT DESCRIPTION & Additional Observations	AVERAG DEFEC SPACIN (mm)
		75	0 (55)	10	10.10 10.28 5.62 10.70		CORE LOSS SILTSTONE orange brown with pale brown	XW - HW			9.86 m: J, 70°, PI, Sm-Ro, FeO Sn 9.91-9.91 m: JX2, 45°, PI-Un, Sm-Ro, FeO, CLAY Sn-Ct 9.94-10.04 m: EWS, CLAY, <100 mm 10.38-10.43 m: JX2, 0-10°, sp = 50 mm, PI-Un, Sm, GRAVEL, SAND Ct, <10 mm, drilling induced opening.	
		100	0 (0)	- 11 — -	5.20		SILTSTONE/BRECCIA pale grey with orange, coarse sand to sub-angular to angular gravel inclusions in extremely weathered siltstone matrix	XW			drilling induced opening 10.47-10.57 m: J, 70°, PI, Sm, CLAY, SAND Ct 10.68 m: J, 0°, PI, Sm, Cn	
		100	10 (90)	- 12 — -	<u>11.83</u> 4.07		SILTSTONE				11.83-12.00 m: Jmultiple, 0-85°, sp = 0-20 mm, Pl, Sm, CLAY, SAND Ve-Ct 12.00-12.10 m: IS, CLAY, <100 mm 12.13-12.70 m: Jmultiple, 0-15°, sp = 0-140 mm, Pl-Un, Sm-Ro, FeO, CLAY Sn-Ve	
	TURN	100	10 (100)	- - 13 —				XW - HW			12.88-13.30 m: JX7, 0°, Un, Sm, CLAY, SAND Ve-Ct	
NMLC	50% Water RETURN	100	25 (100)	- - 14 — -				НΜ			13.45-13.58 m: JX5, 70-90°, sp = 0-80 mm, PI-Un, Sm, CLAY, SAND, fine GRAVEL Ct 13.66-13.72 m: J, 70°, PI, Sm, CLAY, SAND Ct, <3 mm 13.76 m: DB 13.86 m: JX2, 0-80°, sp = 0-40 mm, PI-Un, Sm-Ro, FeO Sn 13.94 m: J, 30°, PI, Sm, CLAY Ve 14.08 m: J, 60°, PI-Un, Sm-Ro, FeO, CLAY Sn-Ve	
		100	35 (100)	- 15 — - -				XW HW			14.30 m: J, 60°, PI, Ro, SAND Ct, <2 mm 14.51-14.65 m: J, 80°, PI, Sm, CLAY Ve 14.75 m: J, 60°, PI, Sm, CLAY Ve 15.06-15.12 m: JX2, 5-60°, sp = 10-80 mm, PI-Un, Sm, CLAY Ve 15.21-15.30 m: J, 10-80°, sp = 0-110 mm, Ur Sm-Ro, FeO, SAND, GRAVEL Sn-Ct 15.51 m: J, 30°, PI-Un, Sm, FeO, SAND Sn-Ct	1
				- 16 — -	16.00 -0.10 16.30 -0.40	-	pale grey				15.60 m: J, 10°, PI, Sm, CLAY Ve 15.74 m: J, 5°, Un, Sm, CLAY Ve 15.87 m: J, 0°, PI-Un, Sm, Cn 15.94 m: J, 20°, PI-Un, Sm-Ro, FeO Sn 16.16-16.22 m: CS, <60 mm	
		100	20 (95)	- - 17 —	<u>16.80</u> -0.90 17.20			нм			16.41-16.53 m: J, 0-10°, sp = 30-100 mm, Ur Sm-Ro, FeO, SAND, GRAVEL Sn-Ct 16.61-16.66 m: CS, SAND, GRAVEL, <50 mm 16.74-16.87 m: J, 80°, Pl, Sm, CLAY Cn-Ve 17.03 m: J, 0°, Un, Sm, Cn	1,
					-1.30		END OF BOREHOLE @ 17.20 m TARGET DEPTH GROUNDWATER ENCOUNTERED @ 4.30 m DEPTH STANDPIPE INSTALLED				- √ 17.06-17.15 m: J, 70°, PI-Un, Sm, SAND, GRAVEL Ct	
				- - - 19 —								
				-								

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE & TEST PIT REPORTS

DRILLING/EXCAVATION METHOD

	XCAVATION ME								
ADH	Hollow auger dr		ΞX	Excavator		P	Q3	Diamon	d core - 83 mm
ADT	Auger drilling wi		ΗA	Hand auger		P	Т		be sampling
ADV	Auger drilling wi	th v-bit	HAND	Excavated by	hand method	ds R	AB	Rotary a	air blast
AIRCORE	Aircore	F	HMLC	Diamond core	- 63 mm	R	С	Reverse	e circulation
AT	Air track	F	HQ3	Diamond core	- 61 mm	R	Т	Rock ro	ller
BH	Backhoe bucket		JET	Jetting		S	ONIC	Sonic d	rilling
СТ	Cable tool rig		MZ	Mazier tube sa	ampling	S	PT		d penetration testing
DTC	Diatube coring		NDD	Non-destructiv		U			rbed tube sampling
EE	Existing excava			Diamond core		-	/B		pre drilling
EPT	Extruded push t			Diamond core		v		VVashbo	i c uning
	ON/EXCAVATIO			Diamond core	- 45 mm				
L	Low resistance			ossible with littl	e effort from	the equir	mentus	he	
M									equipment used.
н									requires significant
	effort from the e		n, execut				acaoloi	r rate arre	roquiroo orginirouni
R			. No fur	ther progress p	ossible with	out the ris	k of dam	ade or un	acceptable wear to
	the digging impl								
These asses	sments are subje			nt on manv fac	tors including	g the eau	ipment po	ower. wei	ht, condition of
	r drilling tools, and					1-		,	, ,
WATER									
¥	Wate	er level at date	shown	<]	Partial wa	ater loss		
\triangleright	Wate	er inflow				Complete	water lo		
GROUNDW	ATER NOT The	e observation o	of groun	dwater, whethe	er present or	not, was	not possi	ble due to	drilling water,
OBSERVED	sur	face seepage	or cave	in of the boreh	ole/test pit.				-
GROUNDWA	ATER NOT The	e borehole/test	t pit was	dry soon after	excavation.	However	, ground	water cou	d be present in less
ENCOUNTE									n left open for a
		ger period.						-	
	AND TESTING								
SPT				289.6.3.1-2004					
4,7,11 N=18				lows per 300m					
30/80 mm				e blows and pe	netration for	that inter	val are re	ported	
RW		occurred unde							
HW				mmer and rod	weight only				
HB	Hammer do	uble bouncing	on anvil						
DS	Disturbed sa								
BDS	Bulk disturb								
G	Gas Sample	e							
W	Water Samp								
FP		ability test ove							
FV				s uncorrected s	shear strengt	h (s _v = pe	ak value	, s _r = resio	lual value)
PID		tion Detector re	•						
PM		eter test over se							
PP				ed as instrume					
U63			number	indicates nomi	inal sample d	diameter i	n millime	tres	
WPT	Water press								
DCP		ne penetration	test						
	O	ration test							
CPT				assura (II) mas	surement				
CPT CPTu	Cone penet	ration test with							
CPT CPTu RANKING O		ration test with				or specific	soil cont	taminatior	assessment
CPT CPTu RANKING O projects)	Cone penet	ration test with SERVABLE C	ONTAN		D ODOUR (fo	-			
CPT CPTu RANKING O projects) R = 0	Cone penet F VISUALLY OB No visible evide	ration test with SERVABLE C nce of contami	ONTAN	INATION AND	D ODOUR (fo	No non	-natural c	dours ide	ntified
CPT CPTu RANKING O projects) R = 0 R = 1	Cone penet F VISUALLY OB No visible evide Slight evidence	ration test with SERVABLE C nce of contami of visible conta	ONTAN	INATION AND	D ODOUR (fo R = A R = B	No non Slight n	-natural c on-natura	dours ide al odours	ntified dentified
CPT CPTu RANKING O projects) R = 0 R = 1 R = 2	Cone penet F VISUALLY OB No visible evide Slight evidence Visible contamir	ration test with SERVABLE C nce of contami of visible conta nation	ination aminatio	INATION AND	O ODOUR (fo R = A R = B R = C	No non Slight n Modera	-natural c on-natura te non-na	odours ide al odours atural odo	ntified identified urs identified
CPT CPTu RANKING O projects) R = 0 R = 1 R = 2 R = 3	Cone penet F VISUALLY OB No visible evide Slight evidence Visible contamir Significant visible	ration test with SERVABLE C nce of contami of visible conta nation	ination aminatio	INATION AND	D ODOUR (fo R = A R = B	No non Slight n Modera	-natural c on-natura te non-na	odours ide al odours atural odo	ntified dentified
CPT CPTu RANKING O projects) R = 0 R = 1 R = 2 R = 3 ROCK CORE	Cone penet F VISUALLY OB No visible evide Slight evidence Visible contamir Significant visibl E RECOVERY	ration test with SERVABLE C nce of contami of visible conta nation le contaminatio	ination aminatio	n	D ODOUR (fc R = A R = B R = C R = D	No non Slight n Modera Strong	-natural c on-natura te non-na non-natu	odours ide al odours atural odo ral odours	ntified dentified urs identified identified
CPT CPTu RANKING O projects) R = 0 R = 1 R = 2 R = 3 ROCK CORE TCR = Total	Cone penet F VISUALLY OB No visible evide Slight evidence Visible contamir Significant visible E RECOVERY Core Recovery	ration test with SERVABLE C nce of contami of visible conta nation le contaminatio	CONTAN ination aminatio on k Quality	INATION AND	D ODOUR (fc R = A R = B R = C R = D	No non Slight n Modera Strong	-natural c on-natura te non-na non-natur ore Recov	odours ide al odours atural odo ral odours	ntified dentified urs identified identified F = Fracture
CPT CPTu RANKING O projects) R = 0 R = 1 R = 2 R = 3 ROCK CORE TCR = Total	Cone penet F VISUALLY OB No visible evide Slight evidence Visible contamir Significant visible E RECOVERY Core Recovery (%)	ration test with SERVABLE C nce of contami of visible conta nation le contaminatio RQD = Rocl	CONTAN ination aminatio on k Quality (%)	INATION AND	D ODOUR (fo R = A R = B R = C R = D SCR =	No non Slight n Modera Strong	-natural c on-natura te non-na non-natur ore Recov	odours ide al odours atural odo ral odours very	ntified dentified urs identified identified F = Fracture Frequency
CPT CPTu RANKING O projects) R = 0 R = 1 R = 2 R = 3 ROCK CORE TCR = Total	Cone penet F VISUALLY OB No visible evide Slight evidence Visible contamir Significant visible E RECOVERY Core Recovery (%) re recovered 100	ration test with SERVABLE C nce of contami of visible conta nation le contaminatio RQD = Rocl	CONTAN ination aminatio on k Quality (%)	n	D ODOUR (fc R = A R = B R = C R = D SCR = 	No non Slight n Modera Strong	-natural c on-natura te non-na non-natur ore Recov) I core recov	odours ide al odours atural odo ral odours very	ntified dentified urs identified identified F = Fracture

METHOD OF SOIL DESCRIPTION USED ON BOREHOLD & TEST PIT REPORTS

SYMBOLS	;									
	FILL						CLAY (CL,	CI or CH)		
0000		GW, GP, GN	A or CC)		<u>N/</u>	20		SOILS (OL, OH or Pt)		
0000	GRAVEL (GVV, GF, GN			1/ 1/	<u>//</u> _	ONGAINIC			
					60					
	SAND (SW	/, SP, SM or	SC)		05	a	COBBLES	or BOULDERS		
					D	2				
× × ×		N 41 1\								
× × × ×	SILT (ML o	or IVIH)								
Combination	ns of these ba	asic svmbols	may be used to	indic	ate mixed i	naterial	s such as san	dv clav.		
			STRATIGRAPH					, ,		
							ts using the p	referred method given	in AS1726-	2017.
The materia	I properties a		in the field by v	isual/	tactile meth	ods.	51			
0.11.0		Particle Size					Pla	sticity Properties		
Soil Group		ivision	Particle S							
	BOULDERS		> 200 m	m	.6(VIII.	HHHHHH			
	COBBLES		63 to 200	mm	.5(Ino other		H
	Co	arse	19 to 63 i	nm	20				A 1100 201	-
GRAVEL	Me	dium	6.7 to 19	mm	-4 X3	JIIII		CH or OH	13 (W.	
	F	ine	2.36 to 6.7	mm	ION 3		MIIIII			
	Co	arse	0.6 to 2.36	mm	LICIT			Cl or OI	100 100 100	
SAND	Me	dium	0.21 to 0.6	mm	PLASTICITY INDEX /-	MII	YA.	MH or OH		
		ine	0.075 to 0.2	1 mn	44	WY.	CL or OL			
	SILT		0.002 to 0.0	75 mr	n		N	40 50 60 70	80 90	100
	CLAY		< 0.002 r	nm	- P -	0 10	20 30	LIQUID LIMIT W, %	90 <u>90</u>	TOL.
MOISTURE	CONDITION									
Symbol T		scription								
								riable and powdery.		
								ravels tend to cohere.		
			e water. Sand ar					t as specified in AS172	96-2017	
	NCY AND DE			Clativ					.0-2017.	
		Grained Soi	ls				Coarse	Grained Soils		
Symbol	Term		Shear Strength		Symbol		Term	Density Index (%)	SPN "N'	
VS	Very Soft		12 kPa		VL		ery Loose	Less than 15	0 to 4	
S	Soft		25 kPa		L		Loose	15 to 35	4 to 10	
F	Firm		50 kPa		MD		ium Dense	35 to 65	10 to 3	
St	Stiff		100 kPa		D		Dense	65 to 85	30 to 5	
VSt	VSt Very Stiff 100 to 200 kPa H Hard Above 200 kPa			VD	ve	ry Dense	Above 85	Above 5	U	
	Fr Friable -									
		sults, consist	ency and densit	y mav	/ be assess	ed from	correlations	with the observed beha	aviour of the	
material.		,	,	,	,					
	* SPT correlations are not stated in AS1726-2017, and may be subject to corrections for overburden pressure and equipment type.									
CEMENTAT										
Weakly Cen			il may be easily							
Moderately	Cemented	Effort is	s required to disa	aggre	gate the so	ii by hai	nu in air or wa	ater.		

TERMS FOR ROCK MATERIAL STRENGTH & WEATHERING AND ABBREVIATIONS FOR DEFECT DESCRIPTIONS

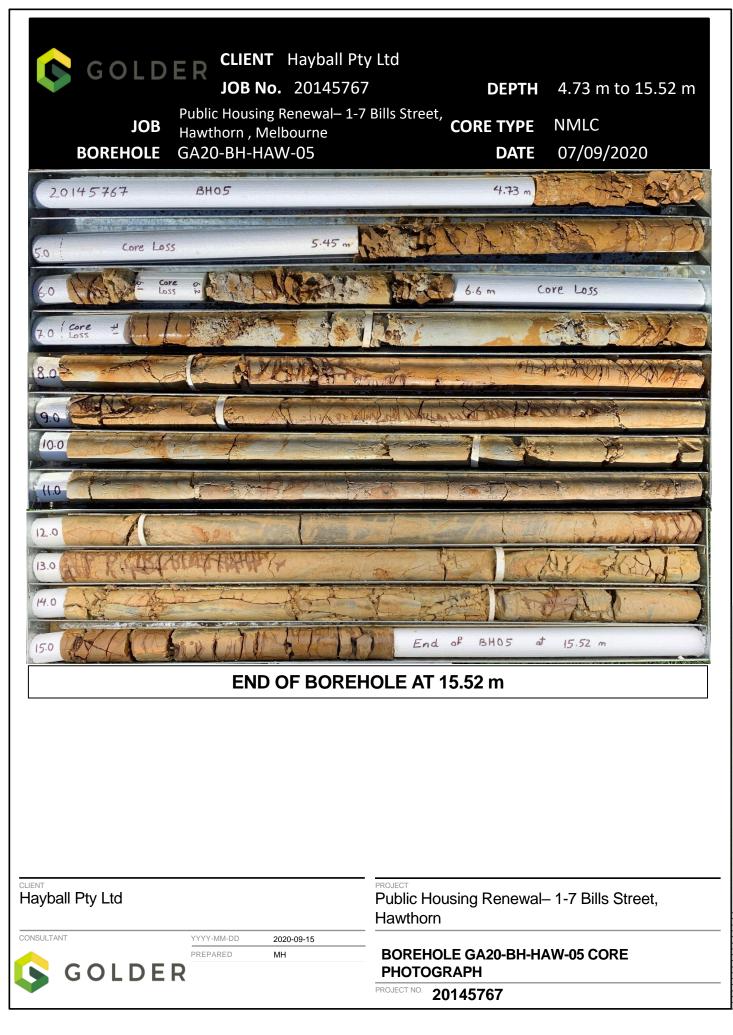
STRENG	ТН							
Symbol	Term	UCS (MPa)			Fi	eld Guide		
VL	Very Low	0.6 to 2			nder firm blows with sh le by hand. Pieces up			peeled with knife; too hard en by finger pressure.
L Low 2 to 6 of pick point diameter right handling.			of pick poi diameter n	nt; has dul	knife; indentations 1 n I sound under hamme ken by hand. Sharp eo	r. A piece o	f core 150 i	
М	Medium	6 to 20	Readily sc by hand w			e 150 mm lor	ng by 50 m	m diameter can be broken
Н	High	20 to 60			mm long by 50 mm dia a single firm blow; roo			
VH	Very High	60 to 200			iks with pick after more			0
EH	Extremely High	>200	rings unde	r hammer		-		ugh intact material; rock
fabric or te	xture should	l be noted, if re		be descril	bed using soil characte	eristics. The	presence o	f an original rock structure,
		EATHERING	1					
Syn	nbol	Term				eld Guide		
RS Residual material t			ial is weathered to such an extent that it has soil properties. Mass structure and ial texture and fabric of original rock are no longer visible, but the soil has not been cantly transported.					
					ed to such an extent th I fabric of original rock			. Mass structure and
DW	HW	Highly Weathered	extent that changed	at the color by weathe ncreased b	ur of the original rock i	s not recogn inerals have	izable. Roc weathered	ning or bleaching to the k strength is significantly to clay minerals. Porosity osition of weathering
MW Moderately Weathered Exte		extent that	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognizable, but shows little or no change of strength from fresh rock.					
S	W	Slightly Weathered	change o	f strength	from fresh rock.	-		ts but shows little or no
	R	Fresh			n of decomposition of i	ndividual mi	nerals or co	olour changes.
		DR DEFECT T	YPES AND					
Defect Ty					or Infilling		oughness	
P X C J	Parting Foliation Cleavage Contact Joint			Cn Sn Ve Ct In	Clean Stain Veneer Coating Infill	Ri Si Po Si	m o I	Very Rough Rough Smooth Polished Slickensided
SSu Sheared Surface						eholes – The dip		
SS Sheared Seam		Planarity	/ Planar	nclination fro given.	om horizontal) of the defect			
	SZ Sheared Zone			PI	abalaa Tha in din din din '			
CS	Crushed S			Cv Curved Inclined Boreholes – The incline				
IS	Infilled Se			Un	5			
EWS	2	Weathered S	eam	St	Stepped the core axis and the vertical direction			
V	Vein			lr	Irregular			

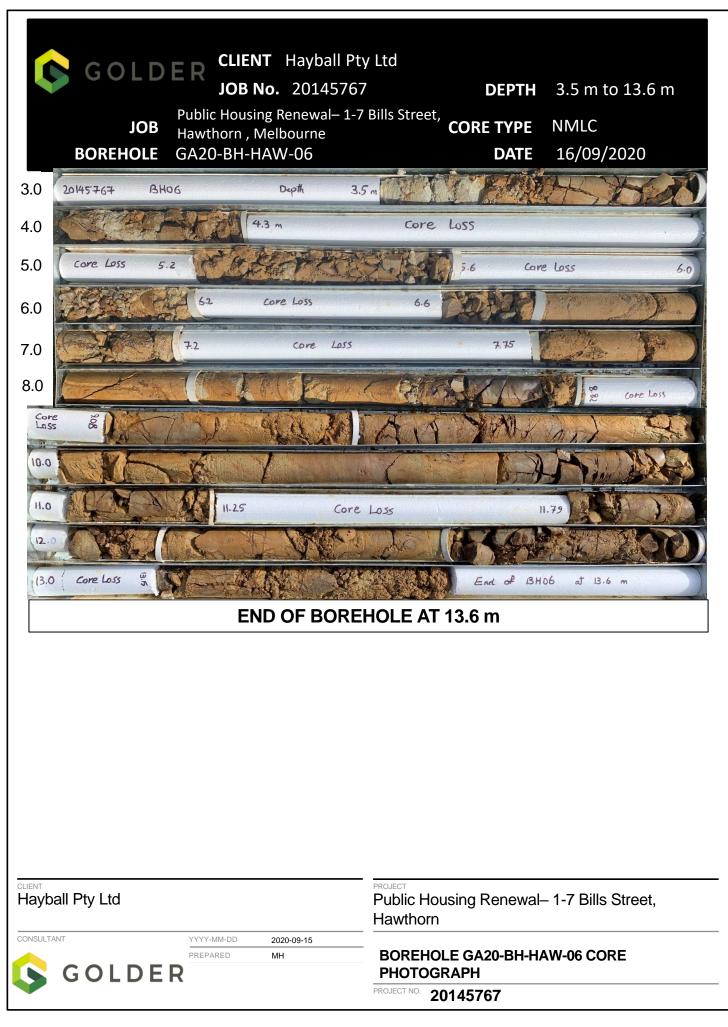
APPENDIX B

Reports of Core Photographs GA20-HAW-BH-01 to GA20-HAW-BH-12

BOREHOLE GA20-BHHAW-01 CORE PHOTOGRAPH

PROJECT NO. 20145767


GOLDER


. IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIL

PRO.IEC

Hawthorn

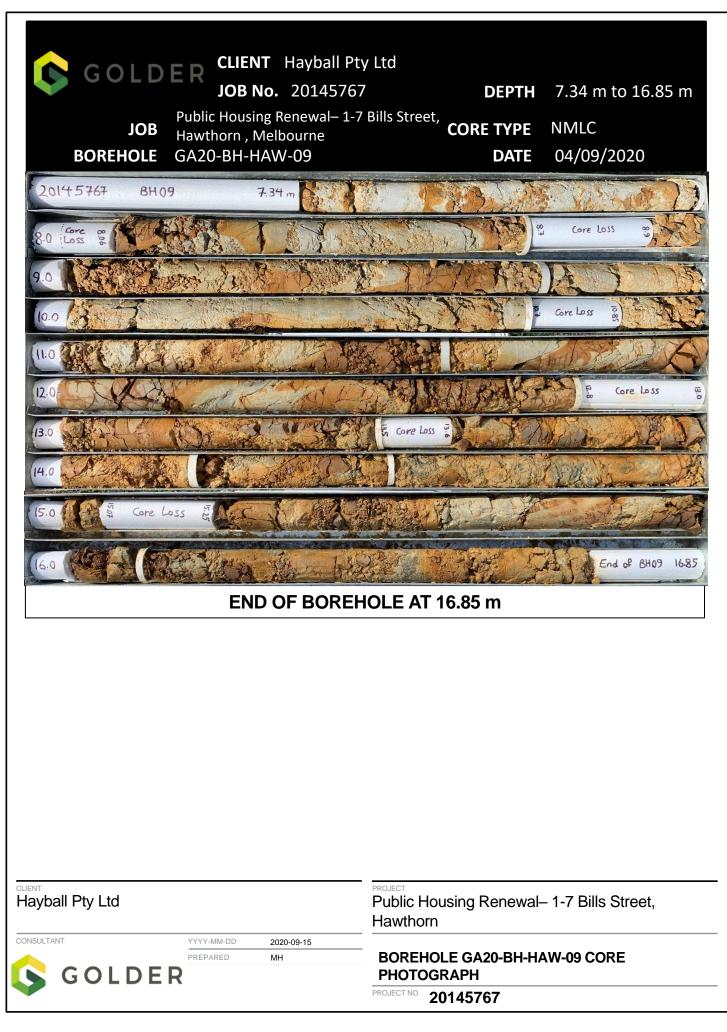
CLIENT Hayball Pty Ltd

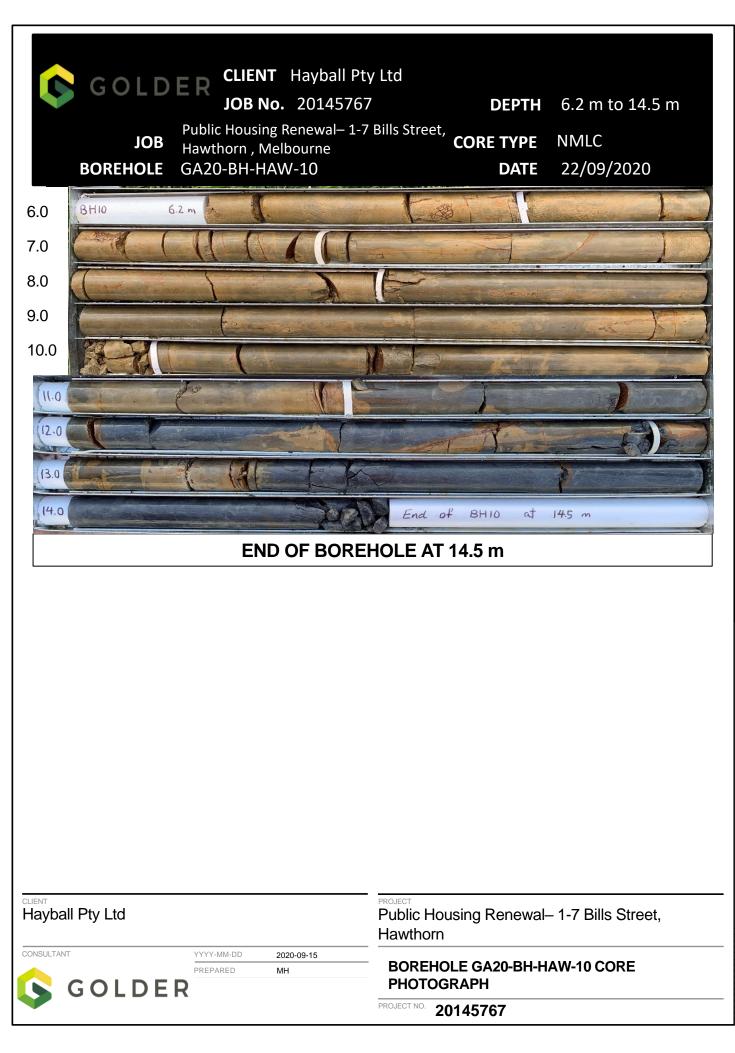
CONSULTANT

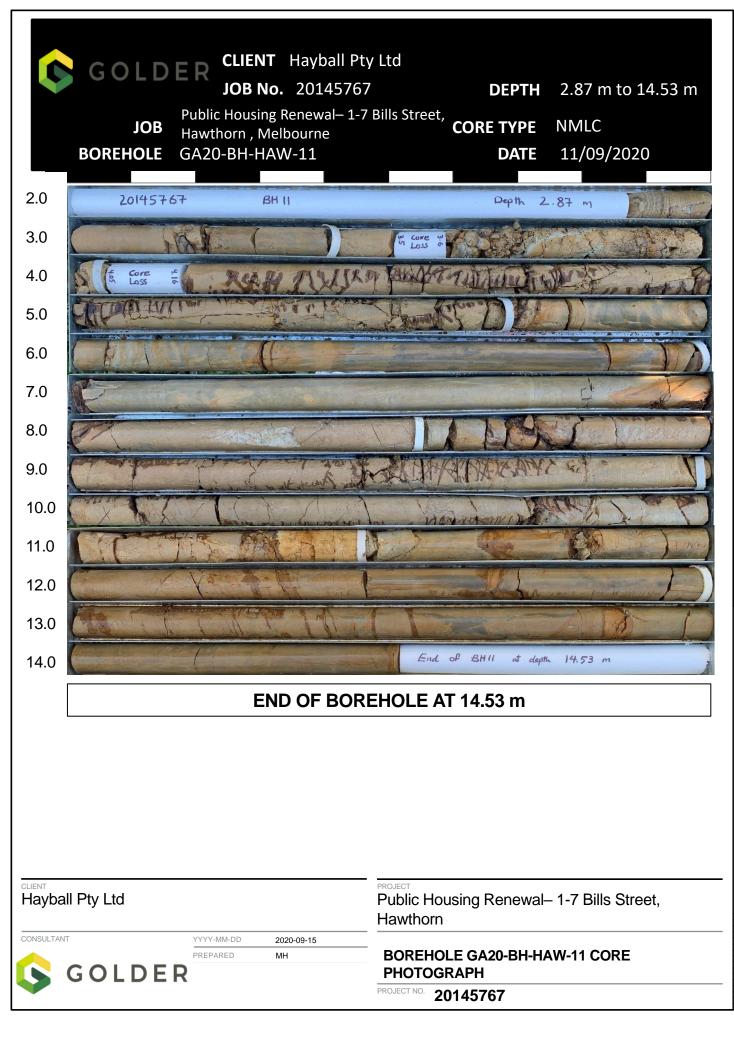
YYYY-MM-DD 2020-09-15

GOLDER

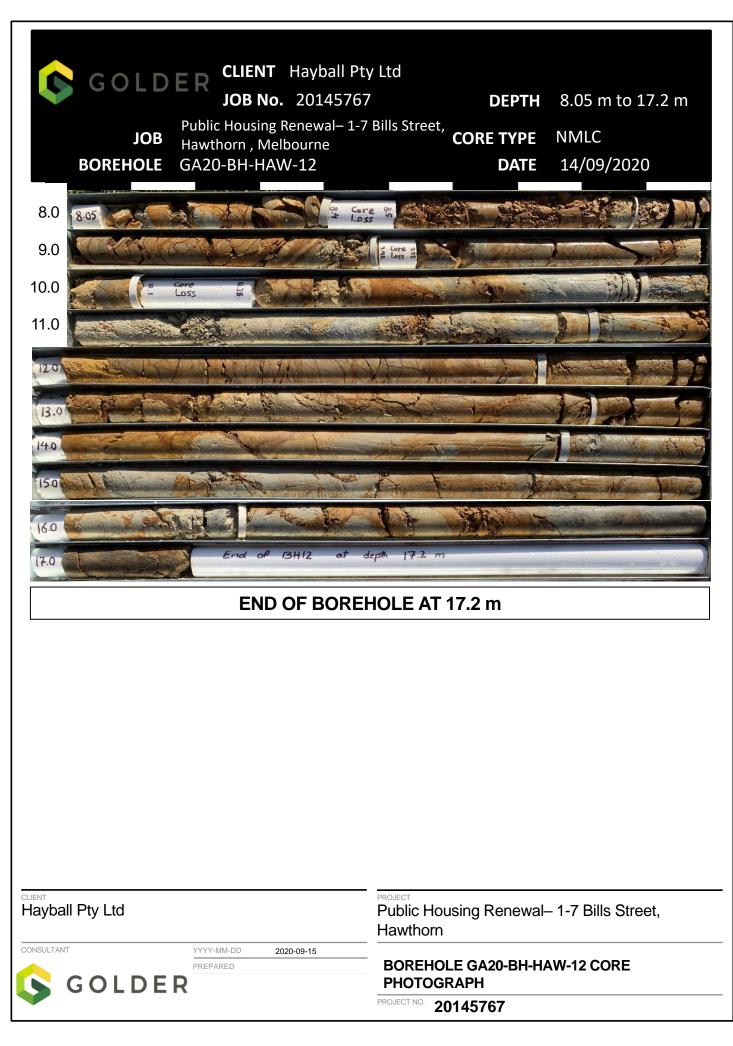
PREPARED MH


PROJECT NO. 20145767


PHOTOGRAPH


Public Housing Renewal- 1-7 Bills Street,

BOREHOLE GA20-BH-HAW-07 CORE



IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN N

1 IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED

APPENDIX C

Reports of Groundwater Wells GA20-BH-HAW-01 GA20-BH-HAW-03 GA20-BH-HAW-09 GA20-BH-HAW-09 GA20-BH-HAW-10 GA20-BH-HAW-12 Groundwater Well Licenses

Works Licence ID:

WLE079046

Printed on: 28 Aug 2020 11:29:11 am

COPY OF RECORD IN THE VICTORIAN WATER REGISTER LICENCE TO CONSTRUCT WORKS

under Section 67 of the Water Act 1989

The information in this copy of record is as recorded at the time of printing. Current information should be obtained by a search of the register. The State of Victoria does not warrant the accuracy or completeness of this information and accepts no responsibility for any subsequent release, publication or reproduction of this information.

This licence does not remove the need to apply for any authorisation or permission necessary under any other Act of Parliament with respect to anything authorised by the works licence.

Water used under this licence is not fit for any use that may involve human consumption, directly or indirectly, without first being properly treated.

This licence is not to be interpreted as an endorsement of the design and/or construction of any works (including dams). The Authority does not accept any responsibility or liability for any suits or actions arising from injury, loss, damage or death to person or property which may arise from the maintenance, existence or use of the works.

Each person named as a licence holder is responsible for ensuring all the conditions of this licence are complied with.

This licence authorises its holders to construct the described works, subject to the conditions.

Licence Holder(s)

DEPARMENT OF HEALTH AND HUMAN SERVICES of 120 RACECOURSE RD FLEMINGTON VIC 3031

Licence Contact Details

DEPARMENT OF HEALTH	120 RACECOURSE RD
AND HUMAN SERVICES	FLEMINGTON VIC 3031

Licence Details

Expiry date	28 Aug 2021
Status	Active
Authority	Southern Rural Water
Name of waterway or aquifer	NA for construct/decommission
Water system	Unincorporated (GMU)

Summary of Licensed Works

The details in this section are a summary only. They are subject to the conditions specified in this licence.

Works ID	Works type	Use of water
WRK122312	Bore	Observation
WRK122313	Bore	Observation
WRK122314	Bore	Observation
WRK122315	Bore	Observation
WRK122316	Bore	Observation
WRK122317	Bore	Observation

Description of Licensed Works

WORKS ID WRK122312

Works type	Bore
Works subtype	Drilled bore
Proposed maximum depth	30.000 metres

Works location

Easting
327557.593

Northing 5810280.313

Zone MGA Zone 55

Land description

Volume 8167 Folio 033 Lot 1 of Plan TP242273Y

Property address

4/6 BILLS STREET, HAWTHORN, VIC 3122

Description of Licensed Works

Bore	
Drilled bore	
30.000 metres	
Northing	Zone MGA
5810271.900	Zone 55
	Drilled bore 30.000 metres <i>Northing</i>

Property address

4/6 BILLS STREET, HAWTHORN, VIC 3122

Description of Licensed Works

WORKS ID WRK122314

Works type	Bore
Works subtype	Drilled bore
Proposed maximum depth	30.000 metres

Works location

Easting
327640.140

Northing 5810349.097

Zone MGA Zone 55

Land description

Volume 8167 Folio 033 Lot 1 of Plan TP242273Y

Property address

4/6 BILLS STREET, HAWTHORN, VIC 3122

Description of Licensed Works

WORKS ID WRK122315

Works type	Bore
Works subtype	Drilled bore
Proposed maximum depth	30.000 metres

Works location

Easting	Northing	Zone MGA
327570.834	5810362.617	Zone 55

Land description

Volume 8167 Folio 033 Lot 1 of Plan TP242273Y

Property address

4/6 BILLS STREET, HAWTHORN, VIC 3122

Description of Licensed Works

WORKS ID WRK122316

Works type	Bore
Works subtype	Drilled bore
Proposed maximum depth	30.000 metres

Works location

Easting 327615.174

Northing 5810300.551

Zone MGA Zone 55

Land description

Volume 8167 Folio 033 Lot 1 of Plan TP242273Y

Property address

4/6 BILLS STREET, HAWTHORN, VIC 3122

Description of Licensed Works

WORKS ID WRK122317

Works type	Bore	
Works subtype	Drilled bore	
Proposed maximum depth	30.000 metres	
Works location		
Easting	Northing	Zone MGA
327587.580	5810327.967	Zone 55
Land description Volume 8167 Folio 033 Lot 1 of Plan TP242273Y		
Property address		
4/6 BILLS STREET, HAW	THORN, VIC 3122	

Related Instruments

Related water-use entities Nil

Application History

Reference	Type	Status	Lodged date	Approved date	Recorded date
WLI613351	Issue	Approved	28 Aug 2020	28 Aug 2020	

Conditions

Licence WLE079046 is subject to the following conditions:

Siting and construction

- 1 The bore(s) must be drilled at the location specified in the application approved by the Authority.
- 2 If after drilling the bore is considered unsatisfactory a replacement bore may be drilled on the land specified in the licence.

Preventing pollution

- 3 All earthworks must be carried out, and all drilling fluids and waters produced during construction and development must be disposed of, in ways that avoid contaminating native vegetation, waterways, aquifers, the riparian environment, the riverine environment or other people's property.
- 4 Construction must stop immediately if the Authority reasonably believes that fuel, lubricant, drilling fluid, soil or water produced during construction and development is at risk of being spilled into native vegetation, waterways, aquifers, the riparian environment, the riverine environment or other people's property.
- 5 The licence holder must construct and maintain bund walls, in accordance with the timeframe, specifications, guidelines or standards prescribed by the Authority, to prevent fuel, lubricant, drilling fluid, soil or water produced during construction and development from being spilled into native vegetation, waterways, aquifers, the riparian environment, the riverine environment or other people's property.

Construction standards

6 The bore(s) must be constructed, and where relevant decommissioned, in accordance with the Minimum Construction Requirements for Water Bores in Australia, Edition 3 or its successor.

Drilling licence and supervision requirements

- 7 The bore(s) must be constructed by, or under the direct supervision of, a driller licensed under the Water Act 1989 and endorsed as a Class 1, 2, or 3 driller, with appropriate endorsements.
- 8 If artesian pressure is expected or encountered, then a driller licensed under the Water Act 1989, and endorsed as a class 3 driller, must install casing in the bore(s) to a suitable depth, and in a suitable manner, to prevent its outbreak. A suitable valve must also be fitted to the bore.

Bore completion report

9 A Bore Completion Report must be submitted to the Authority within 28 working days of the bore(s) being completed.

Protecting water resources

- 10 No more than 6 bore(s) may be brought to final development under this licence.
- 11 At the completion of drilling and before the drilling rig leaves the site, all but 6 bore(s) must be decommissioned so as to eliminate physical hazards, conserve aquifer yield, prevent groundwater contamination and prevent the intermingling of desirable and undesirable waters.
- 12 The bore(s) must be located at least 30 metres from any authority's channel, reserve or easement unless authorised by the Authority.

Protecting water quality

- 13 Drilling must not exceed the maximum depth.
- 14 The bore(s) must be constructed so as to prevent aquifer contamination caused by vertical flow outside the casing.
- 15 If two or more aquifers are encountered, the bore(s) must be constructed to ensure that an impervious seal is made and maintained between each aquifer to prevent aquifer connection through vertical flow outside the casing; under no circumstances are two or more aquifers to be screened within the one bore or in any other manner to allow connection between them.
- 16 Boreheads must be constructed, to ensure that no flood water, surface runoff or potential

subsurface contaminated soakage can enter the bore or bore annulus.

Protecting other water users

- 17 The diameter of the drill casing must not exceed 130 millimetres.
- 18 The bore(s) must be constructed so that water levels in the bore(s) can be measured by an airline, a piezometer or a method approved in writing by the Authority.

Fees and charges

19 The licence holder must, when requested by the Authority, pay all fees, costs and other charges under the Water Act 1989 in respect of this licence.

END OF COPY OF RECORD

	ECT: F TION: 1		ousing Street,	COORDS: 327566.8 Renewal Project SURFACE RL: 16.9 Hawthorn INCLINATION: -90° HOLE DEPTH: 14.5	DIRECTION: 000° LOGGED: SHZ DATE: 18-9-20
	Drilling			Field Material Description	Instrumentation Details
WATER		DEPTH RL	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	
100% Water RETURN		16.90 0.50 16.40 1.00 15.40 2.50 14.40 2.90 14.00 4.50 12.40 5.30 6.46		CLAY SANDY CLAY SANDY CLAY CLAY CLAYEY SAND CLAY CLAY GRAVEL SILTSTONE	 Flush Gatic 0.0-3.5m: Bentonite Seal 4.00, RL12.90 50mm PVC
24-09-20 100% Water RETURN	8- - - - - 10-	6.46 10.44 8.00 8.90 8.50 8.40 10.00 6.90		SILTSTONE	4.0-10.0m: machine slotted, 50mm PVC 3.5m-10.5m: 16/30mm Grade Sand filter pack
100% Water RETURN	12-	<u>11.50</u> 5.40 12.00 4.90 12.60 4.30			
	14	14.00 2.90 14.57 2.33		END OF BOREHOLE @ 14.57 m TARGET DEPTH GROUNDWATER ENCOUNTERED @ 9.00 m DEPTH STANDPIPE INSTALLED	14.57, RL2.33

	/

GOLDER REPORT OF STANDPIPE INSTALLATION: GA20-BH-HAW-03

 CLIENT:
 Hayball Pty Ltd

 PROJECT:
 Public Housing Renewal Project

 LOCATION:
 1-7 Bills Street, Hawthorn

 JOB NO:
 20145767

COORDS: 327631.9 m E 5810356.3 m N MGA94 55 SURFACE RL: 19.8 m DATUM: AHD INCLINATION: -90° DIRECTION: 000° HOLE DEPTH: 15.45 m

 SHEET:
 1
 OF
 1

 DRILL RIG:
 Comacchio Geo 205
 CONTRACTOR:
 Contract Drilling Services Pty Ltd

 LOGGED:
 SHZ
 DATE:
 21-9-20

 CHECKED:
 PGS
 DATE:
 20-10-20

	D	rilling			Field Material Description	Instrumentation Details			
METHOD	WATER	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION				
ADT		0	19.40 1.00 18.80 1.50 18.30 2.00		SANDY GRAVELLY CLAY CLAY 	 Flush Gatic ■ 0.0-5.5m: Bentonite Seal 			
		-	17.80 2.65 17.15 <u>3.67</u> 16.13		SILTSTONE CORE LOSS SILTSTONE/BRECCIA				
NMLC	100% Water RETURN	5—	4.60 15.20 5.12 14.59 5.70 6.12		SILTSTONE CORE LOSS SILTSTONE CORE LOSS				
NN	100% Wat	-	13.68 6.70 13.10 7.35 12.45 8.10		CORE LOSS SILTSTONE/BRECCIA CORE LOSS SILTSTONE/BRECCIA	6.0-12.0m: machine slotted, 50mm PVC			
	24-09-29		8.50 11.12 9.30 10.50 9.78 10.02		CORE LOSS SILTSTONE/BRECCIA CORE LOSS SILTSTONE/BRECCIA CORE LOSS	Grade Sand filter pack			
	ETURN	- 10	11.52 11.90		SILTSTONE/BRECCIA	12.00, RL7.80			
NMLC	100% Water RETURN		12.50 7.13 13.50 13.74 6.06		SILTSTONE/BRECCIA CORE LOSS SILTSTONE/BRECCIA CORE LOSS				
		15	14.60 15.00 15.45 4.35		END OF BOREHOLE @ 15.45 m				
		=			TARGET DEPTH GROUNDWATER ENCOUNTERED @ 8.40 m DEPTH STANDPIPE INSTALLED				
		-							
		_	f	This re	echnical purposes only, without attempt to assess	nction with accompanying notes and abbreviations. It has been prepared possible contamination. Any references to potential contamination are for the presence or absence of soil or groundwater contamination. GAP gINT FN. I			

GOLDER REPORT OF STANDPIPE INSTALLATION: GA20-BH-HAW-05

CLIENT:Hayball Pty LtdPROJECT:Public Housing Renewal ProjectLOCATION:1-7 Bills Street, HawthornJOB NO:20145767

COORDS: 327597.8 m E 5810320.3 m N MGA94 55 SURFACE RL: 15.0 m DATUM: AHD INCLINATION: -90° DIRECTION: 000° HOLE DEPTH: 15.52 m

 SHEET:
 1 OF 1

 DRILL RIG:
 Comacchio Geo 205

 CONTRACTOR:
 Contract Drilling Services Pty Ltd

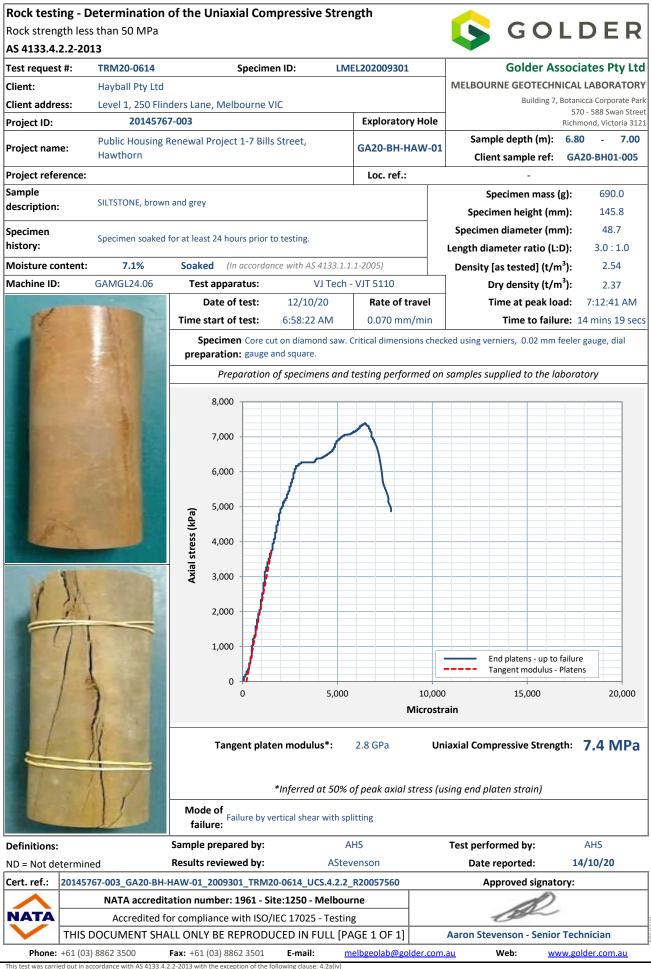
 LOGGED:
 SHZ

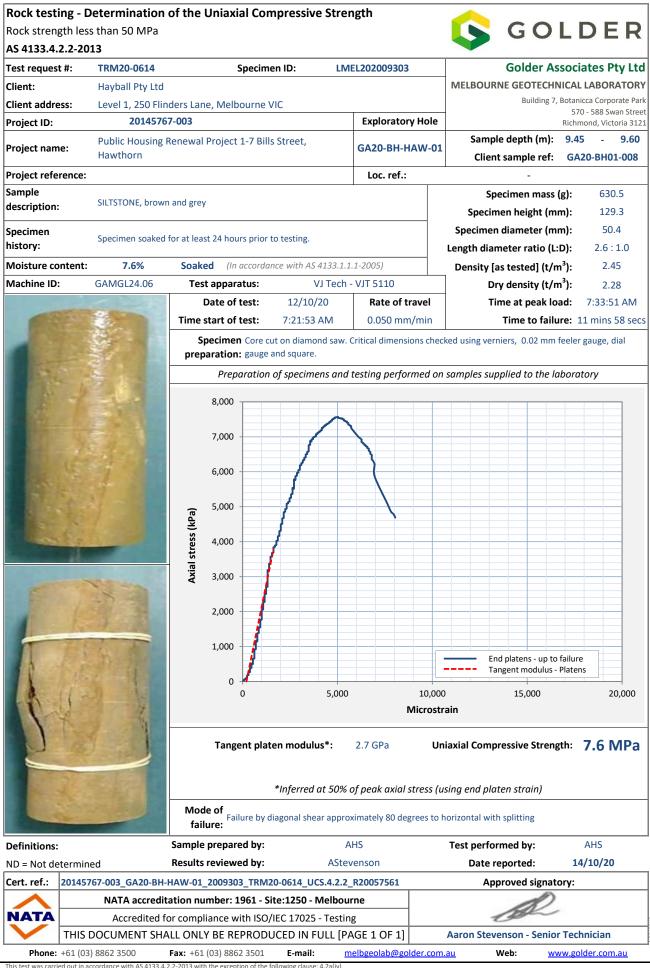
 DATE:
 7-9-20

 CHECKED:
 PGS

 DATE:
 20-10-20

		rilling			Field Material Description	Instrumentation Details
MEIHOD	WATER	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	
		0	15.00		SANDY CLAY	✓— Flush Gatic
		-	0.50 14.50		CLAYEY SAND	
		-	<i>1.00</i> 14.00		CLAY	
		_	1.50 13.50			
		2—	15.50	[-]	CLAY	
		2-				
-	۲,	-	2.80 12.20			
	100% Water RETURN		12.20	-0-	GRAVELLY CLAY	
1	ter R	-				3.50, RL11.50
	% Wa	4 —	4.00 11.00	0	SILTSTONE	4.00, RL11.00 50mm PVC
	10	-	4.73			
		-	5.00		SILTSTONE	
		-	10.00 5.45		CORE LOSS	
		-	9.55		SILTSTONE	
		6 —	6.10 8.80		CORE LOSS	
		_	6.60 8.40		SILTSTONE	
2		-	7.10 7.90		CORE LOSS	4.0-10.0m: machine
		-	7.80			
		8	7.85 7.15			3.5m-10.5m: 16/30mm
	24-09-20	-				Grade Sand filter pack
	24-0					
	NR N	-				
	RETL	-	9.85 5.15			
	100% Water RETURN	10 —	0.10			10.00, KL5.00
	V %0	-				
	10	-	<u>11.15</u> 3.85			
		-				
		12 —	12.25			
,		-	<u>12.25</u> 2.75			
		-				
		-				
		- 14				
		14				
		-	45.00			
		-	<u>15.00</u> 0.00			
_	$\left \right $	-	15.52 -0.52		END OF BOREHOLE @ 15.52 m	15.52, RL-0.52
		16 —			END OF BOREHOLE @ 15.52 m TARGET DEPTH GROUNDWATER ENCOUNTERED @ 8.20 m	
		-			DEPTH STANDPIPE INSTALLED	
		-				
		-				
		- 18-				
				This re	port of standpipe installation must be read in conjur	nction with accompanying notes and abbreviations. It has been prepared
			1	or geot	ecrinical purposes only, without attempt to assess information only and do not necessarily indicate	possible contamination. Any references to potential contamination are for the presence or absence of soil or groundwater contamination. GAP gINT FN

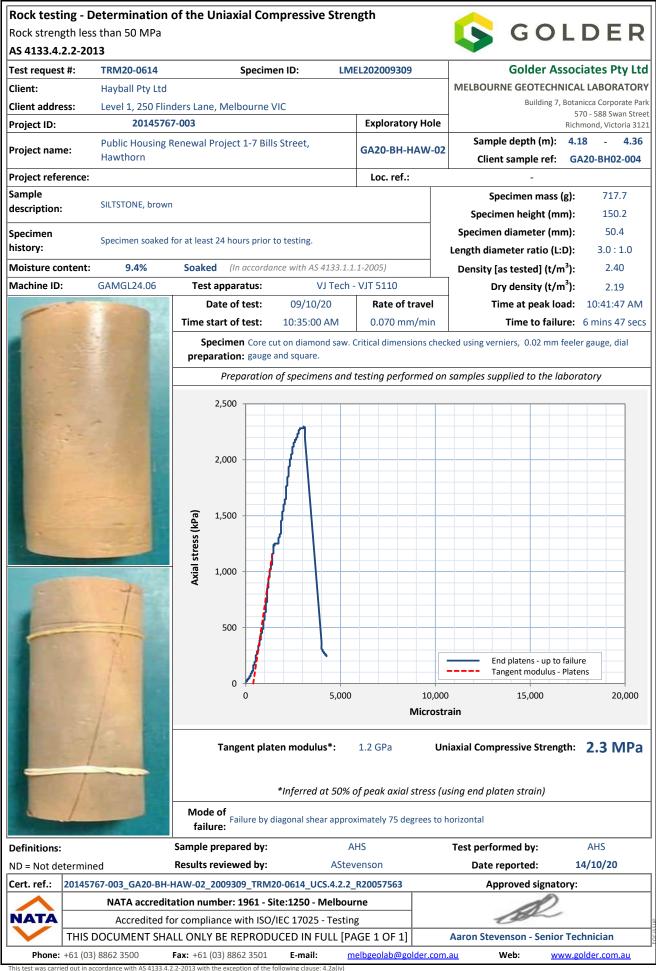

PR _0		CT: Pi ON: 1-		using l Street,	Renewal Project SI Hawthorn IN	CORDS: 327635.2 m E 5810298.2 m N M URFACE RL: 16.0 m DATUM: AHD NCLINATION: -90° DIRECTION: 000° IOLE DEPTH: 16.85 m	GA94 55 E C	SHEET: 1 OF 1 DRILL RIG: Comacch CONTRACTOR: Con .OGGED: SHZ CHECKED: PGS	nio Geo 205 tract Drilling Services F DATE: 4-9-20 DATE: 20-10-20
	D	rilling			Field Material Description	ion	Instrumenta	tion Details	
	WATER	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	SOIL/ROCK MATEF DESCRIPTION				
		0	16.00		SANDY CLAY				sh Gatic
		- - 2—	0.80 15.20 <u>1.40</u> 14.60		CLAY			◄ 0.0-	3.5m: Bentonite Seal
		- - - 4	2.50 13.50 4.00		SANDY CLAY		3.50, RL12.50	0.0- 50m	4.0m: Class 18, im PVC
	Y	-	12.00 4.50 11.50 5.50 10.50 5.90		CLAY				
		6— - -	10.10 7.00 7.34		SILTSTONE			4.0-	10.0m: machine ted, 50mm PVC
NMLC 100% Water RETURN		8	8.66 8.00 7.94 8.70 8.90		CORE LOSS SILTSTONE/BRECCIA	/			n-10.5m: 16/30mm de Sand filter pack
			7.10 10.70				10.00, RL6.00	10.0) m: Bottom of screen
	100% Water RETURN		5.15 <u>11.60</u> 4.40		SILTSTONE/BRECCIA				
			- - - 14 —	12.50 12.80 13.00 3.00 13.50 2.40		CORE LOSS SILTSTONE/BRECCIA			
		- - 16—	<u>15.07</u> 0.75		CORE LOSS SILTSTONE/BRECCIA				
		- - 18-	<u>16.85</u> -0.85		END OF BOREHOLE @ 16.85 m TARGET DEPTH GROUNDWATER ENCOUNTERED DEPTH STANDPIPE INSTALLED	D @ 5.20 m	16.85, RL-0.85	<u></u>	


PR LO		CT: Pu ON: 1-		using I Street,	Renewal Project Hawthorn	Coords: 327562. Surface RL: 11.5 Inclination: -90° Hole Depth: 14.5	DIRECTION: 000°	GA94 55		macchio Geo 205 Contract Drilling Services Pt DATE: 22-9-20
	D	rilling			Field Material Des	cription		Instrume	ntation Details	
METHOD	WATER	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	SOIL/ROCK M DESCRIF					
ADT		0 2 	11.50 0.50 11.00 10.50 10.50 10.00 2.50 2.80 8.70 8.70 8.30		SANDY CLAY CLAY CLAY CLAY CLAY			3.50, RL8.00		— Flush Gatic — 0.0-3.5m: Bentonite Seal
WB	Ā	4	4.50 7.00 6.00 6.20 5.30		SILTSTONE SILTSTONE			4.00, RL7.50		– 0.0-4.0m: Class 18, 50mm PVC
NMILC	100% Water RETURN	- - 8 - - -	<u>8.50</u> 3.00	- - - - - - - - - - - - - - - - - - -						 4.0-10.0m: machine slotted, 50mm PVC 3.5m-10.5m: 16/30mm Grade Sand filter pack
NMLC	100% Water RETURN		<u>11.45</u> 0.05					<u>10.00, RL1.50</u>		— 10.0 m: Bottom of screen
		14— - - 16—	<u>14.50</u> -3.00		END OF BOREHOLE @ 14. TARGET DEPTH GROUNDWATER ENCOUN DEPTH STANDPIPE INSTALLED			14.50, RL-3.00		

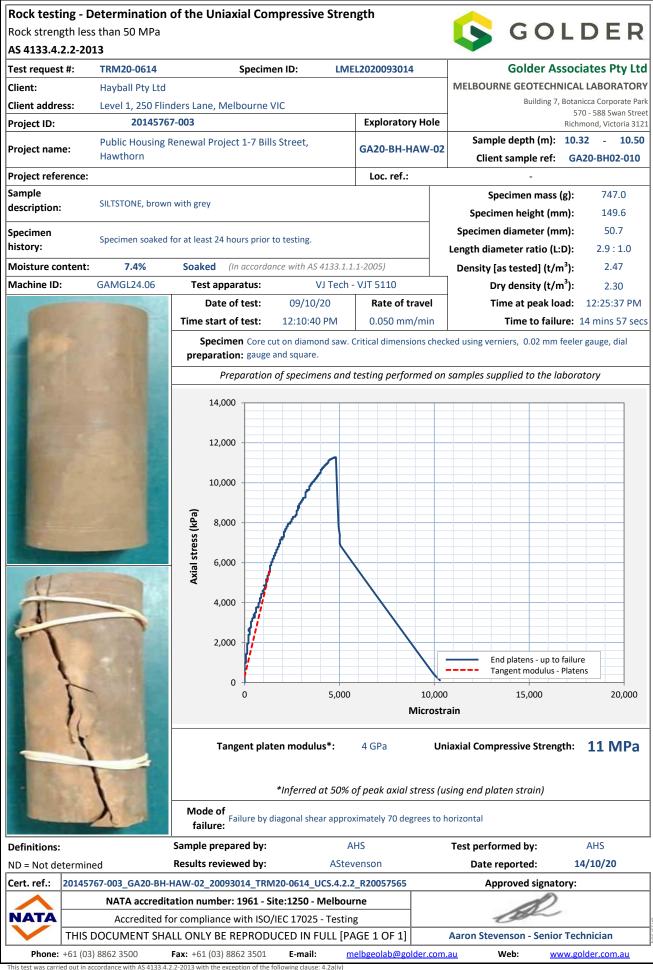
PROJECT: Public Housing Renewal Project SURFACE F LOCATION: 1-7 Bills Street, Hawthorn INCLINATION				-	SURFACE RL: 15	9.7 m E 5810276.0 m N M .9 m DATUM: AHD)° DIRECTION: 000° .20 m	GA94 55	SHEET: 1 OF 1 DRILL RIG: Comacchio Geo 205 CONTRACTOR: Contract Drilling Services Pty LOGGED: SHZ DATE: 14-9-20 CHECKED: PGS DATE: 20-10-20		
		Drilling			Field Material Des	scription		Instrume	ntation Details	
MEIHUU	WATER	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	SOIL/ROCK I DESCRIF					
		0	15.90 0.50		GRAVELLY SANDY CLAY					⊢ Flush Gatic
ADT		- - 2 -	15.40 1.00 14.90 2.50 13.40		CLAY		-			⊢ 0.0-3.5m: Bentonite Seal
		-	3.80				-	3.50, RL12.40		— 0.0-4.0m: Class 18,
	\mathbf{r}	4	12.10		CLAY		-	4.00, RL11.90		50mm PVC
WB	_	- - 6	<u>5.50</u> 10.40		CLAY		-			
NMLC		-	7.00 8.90				-			 4.0-10.0m: machine slotted, 50mm PVC
		8 - -	8.00 8.40 7.40 9.00 6.90 9.48		CORE LOSS SILTSTONE CORE LOSS SILTSTONE/BRECCIA SILTSTONE					— 3.5m-10.5m: 16/30mm Grade Sand filter pack
		10 — - -	6.35 10.10 5.62 10.70 5.20		CORE LOSS SILTSTONE CORE LOSS SILTSTONE SILTSTONE/BRECCIA		-	10.00, RL5.90		— 10.0 m: Bottom of screen
NMLC	teturn	- 12	<u>11.83</u> 4.07		SILTSTONE		-			
	50% Water RETURN	- - 14								
		-	16.00							
		16 — - -	76.30 -0.40 16.80 -0.90 17.20				-	17.20, RL-1.30		
			-1.30		END OF BOREHOLE @ 17. TARGET DEPTH GROUNDWATER ENCOUN DEPTH STANDPIPE INSTALLED				<u> </u>	

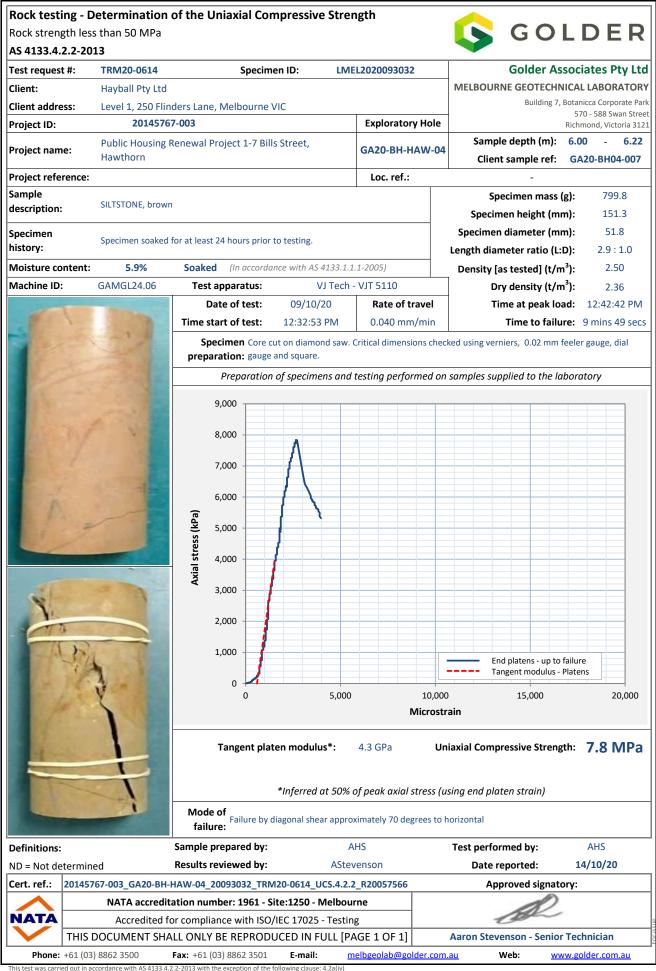
APPENDIX D

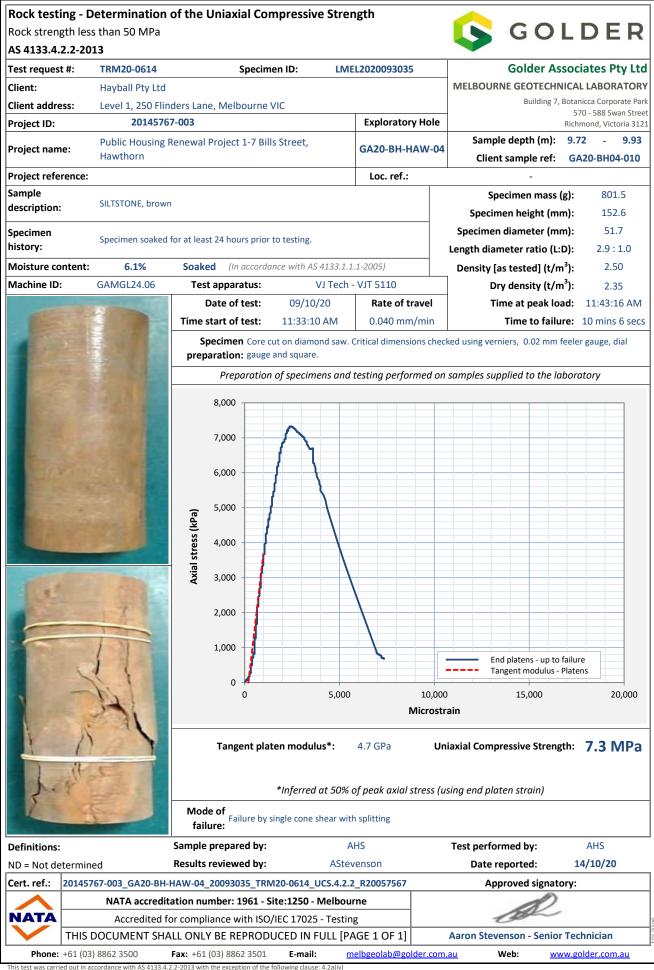
Laboratory Testing Reports

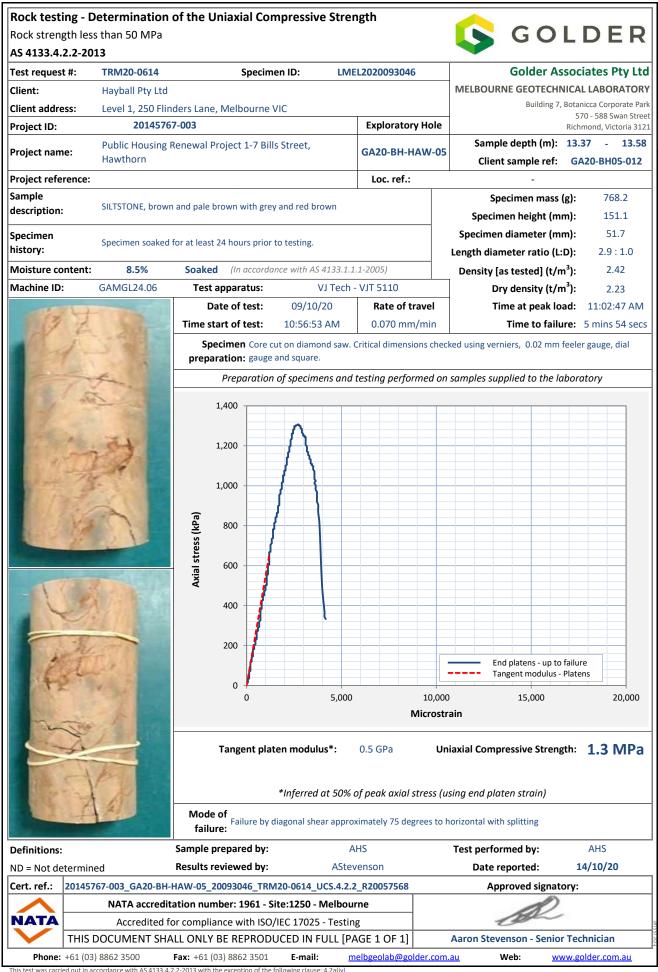


his test was carried out in accordance with AS 4133.4.2.2-2013 with the

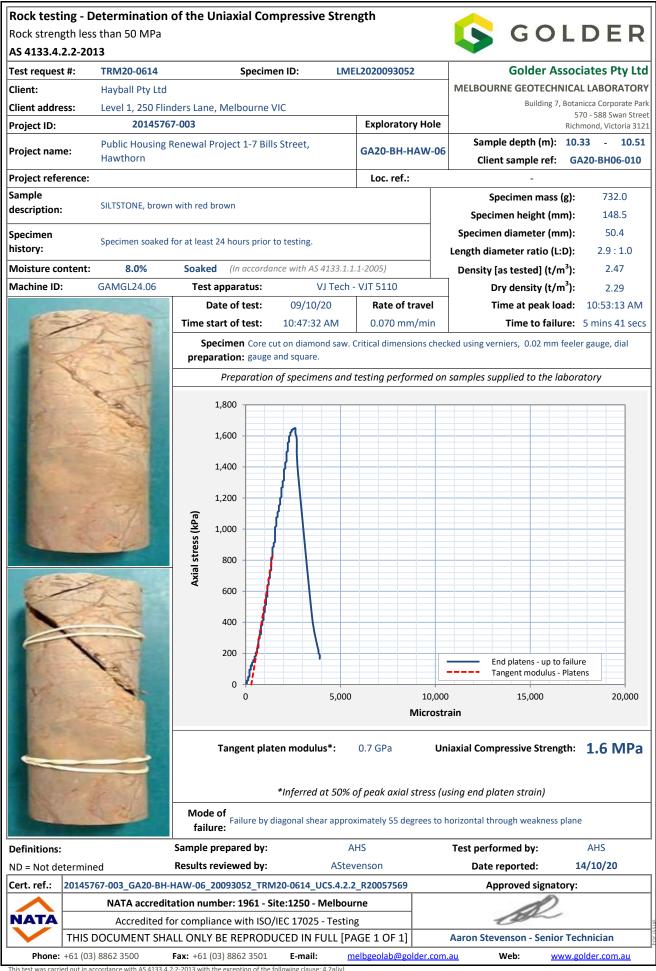


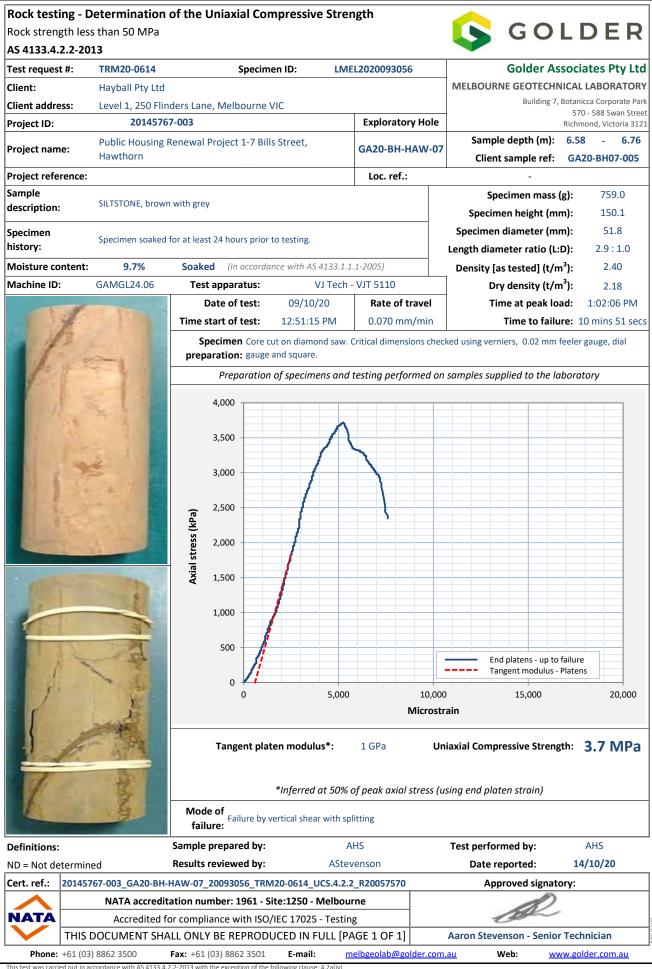

Rep AS4133.UCS.Combined-RL29

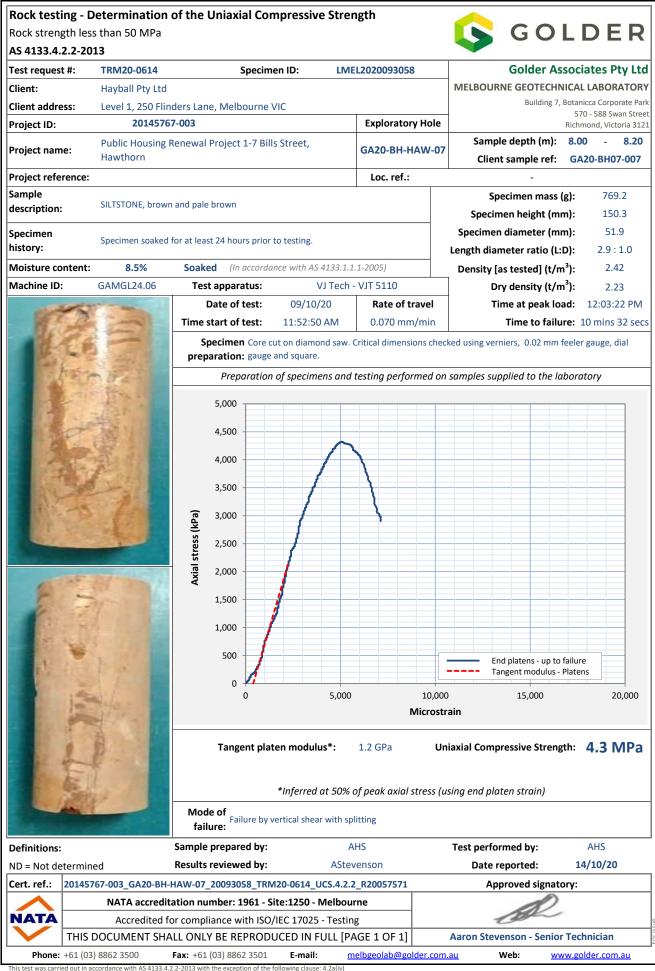


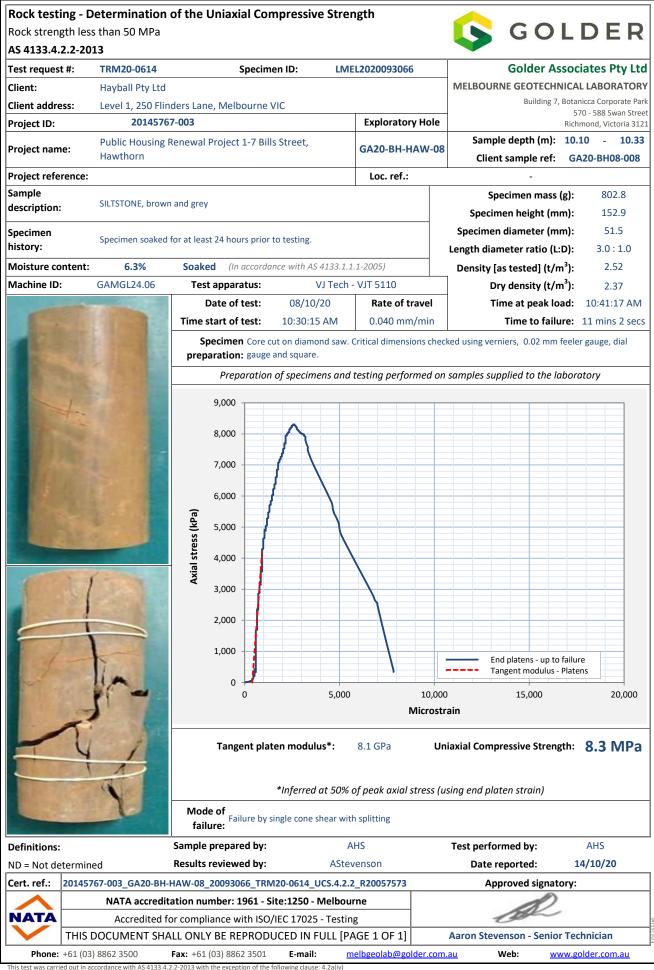


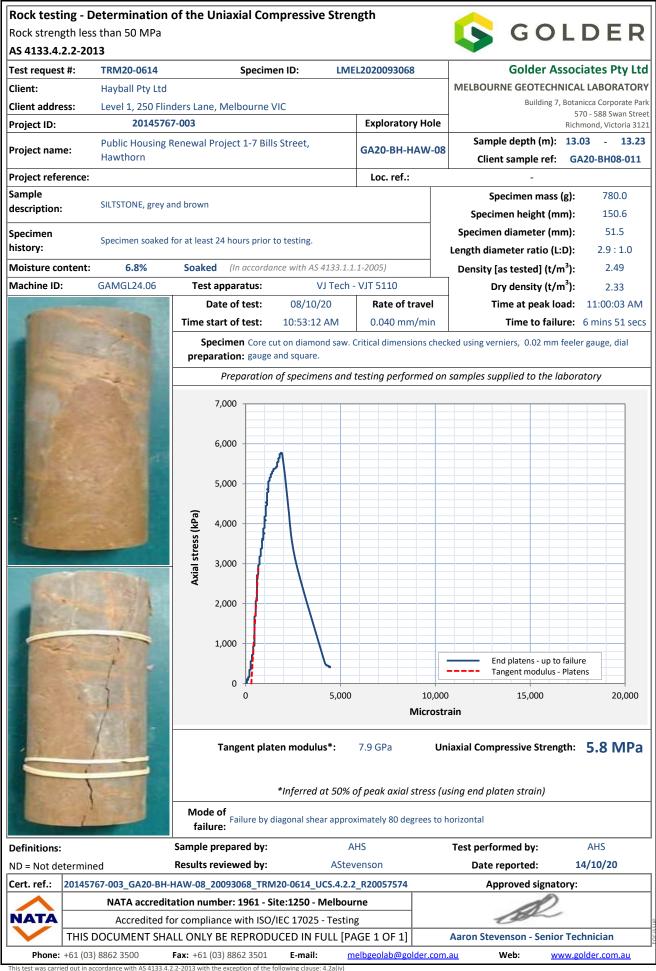
Rep AS4133.UCS.Combined-RL29

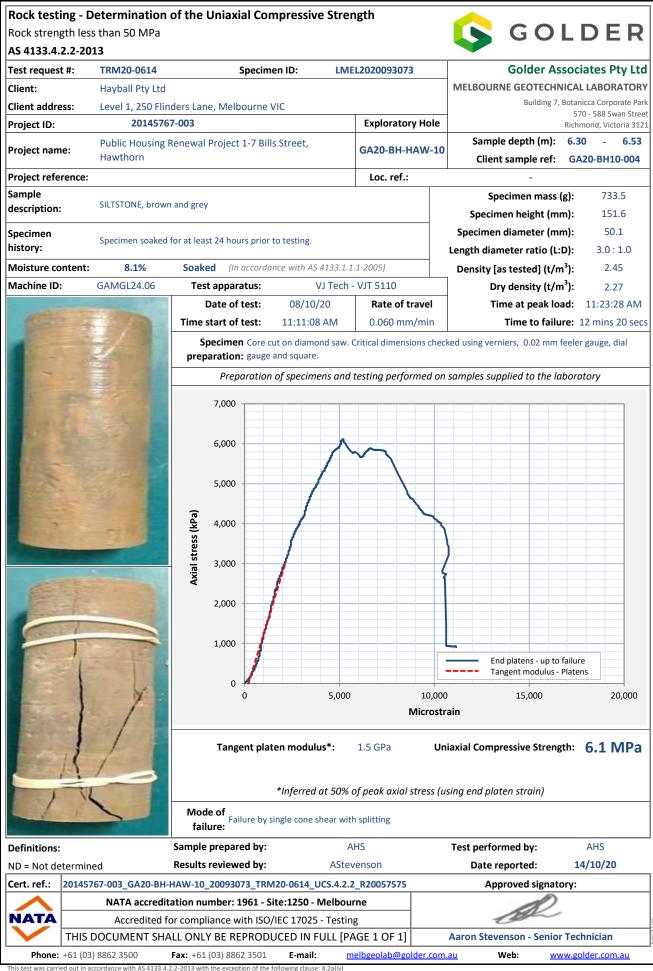


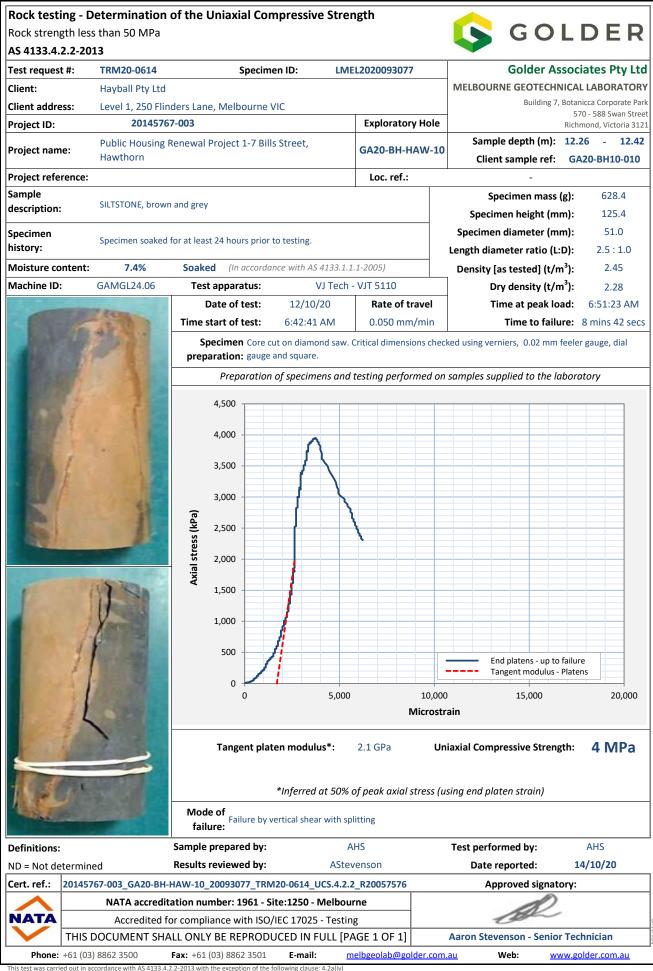


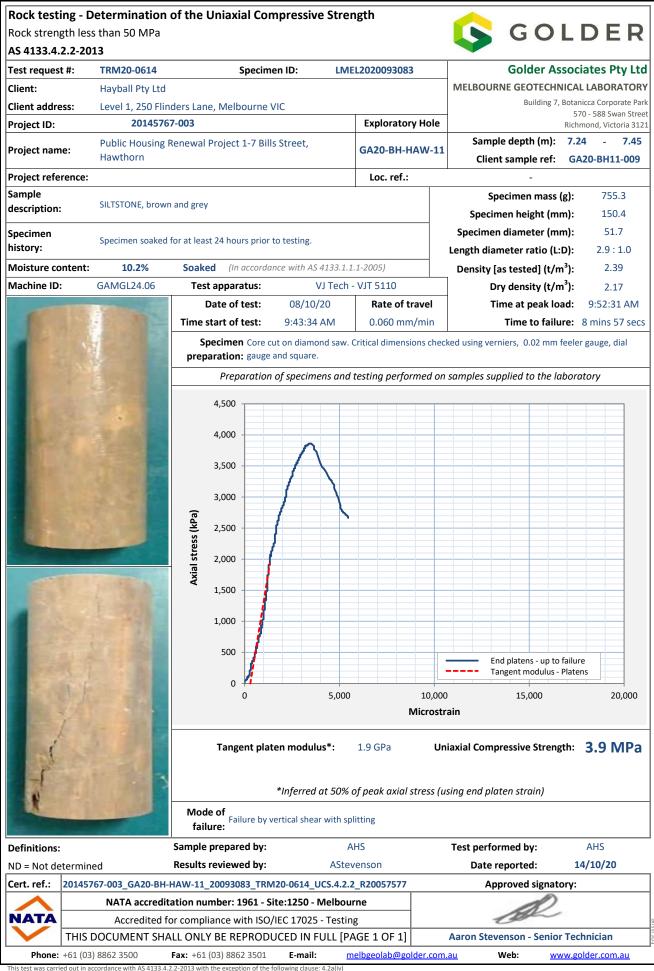



Rep AS4133.UCS.Combined-RL29









Rep AS4133.UCS.Combined-RL29

Rep AS4133.UCS.Combined-RL29

Including test	s on; A		-	l strength index egular Lump (L) specime	ens			TEST	r Repo	ORT - S	UMMA			LYSIS	2	GOL	DER
AS 4133.4.1-2 Test request ID		TRM20-061	14 Lab car	nple IDs: 2009301	0 2000	2021		Lah ran	ort ref.:			/IEL 200					
Client:		ayball Pty Ltd		ipie ibs. 2009301	9 - 2009		t refere	•	ont ren		LI	VIEL_200	57555		MELBOLIR		ociates Pty Ltd
Client address:		, ,	nders Lane, Melb			FIOJEC	Locat				Hawt	horn			MILLBOOK		tanicca Corporate Park
Project ID:	LC		5767-003	Project name:		Du		-	nowal Pr	oject 1-7	7 Bills Str		wthorn			D	570 - 588 Swan Street chmond, Victoria 3121
Exploratory h		Sample	Specimen	Sub-specimen:	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	Sq	S ₁₀	Location test co		Laboratory
reference		depth (m)	reference			- 2	- 3	- 4	- 5	- 0	- /	- 0	- 5	- 10	Mean values:	Calculation exclu	des specimens
GA20-BH-HAW	V-03	5.36	GA20-BH03-	Test type:	D										_	ompliant with the	e tolerances
		5.52	003	**Compliant test:	Yes										specified in the	test method	
Lab sample ID		LMEL20	020093019	Failure mode	W										Axial	Diametral	Irregular
Sampling	Ву	Date:		Failure load [kN]	0.32											0.32	
B		Method:	-	Defect orientation	35°										-	-	-
Moisture conte	ent		8.9%	Is [MPa]	0.15											0.15	
Moisture conte	ent type	:	Soaked	ls ₍₅₀₎ [MPa]	0.15											0.15	
Density (t/m ³)		As received	Dry	Lithological description	SILTSTOM	NE, brown							History:	Test perfor	med on samples submitt	ed to the laboratory. Soak	ed for at least 24 hours.
	ND ND							1	1	1		Cli	ent ref.:		1		
Exploratory h reference		Sample depth (m)	Specimen reference	Sub-specimen:	S1	S ₂	S3	S 4	S ₅	S ₆	\$ ₇	S ₈	S ₉	S ₁₀	Location test co	onducted:	Laboratory
		7.92	GA20-BH03-	Test type:	D											ompliant with the	•
GA20-BH-HAW	V-03	8.00	005	**Compliant test:	Yes										specified in the	test method	
Lab sample ID		LMEL20	020093021	Failure mode	W										Axial	Diametral	Irregular
	Ву	Date:		Failure load [kN]	0.13											0.13	
Sampling		Method:	-	Defect orientation	45°										-	-	-
Moisture conte	ent		11.2%	Is [MPa]	0.053											0.053	
Moisture conte	ent type	:	Soaked	ls ₍₅₀₎ [MPa]	0.053											0.053	
		As received	Dry	Lithelesical description	CUTCTON								History:	Test perfor	med on samples submitt	ed to the laboratory. Soak	ed for at least 24 hours.
Density (t/m ³)		ND	ND	Lithological description	SILISIO	ve, brown						Cli	ent ref.:				
Definitions:				L = Lump / Irregular ane, M = Through rock ma	trix, J = A	-		oplicable Along a p				dn't Fai	I				ten gap at failure ce of the method
Cert. ref.: 20	145767-	003_TRM20-	-0614_PtLd_2009	3019 - 20093021_Rep-200	57555		Spe	cimens p	prepared	by:		AHS			Appr	oved signatory:	
	I			961 - Site:1250 - Melbour				Tests pe		•	AHS		LO/20			R	
NATA	ті		•	ith ISO/IEC 17025 - Testing Y BE REPRODUCED IN FI				Results r				evenson			Aaron Staura	Con Conjor Teel	hnician
		1 (03) 8862 35		Fax: +61 (03) 8862				E-mail:	te repor		14/1 @golder.u	10/2020	1		Aaron Stever Web:	son - Senior Tecl	
				only to the specimens tested.	3201			c-mall:	<u>m</u>	eingeolar	legoluer.	<u>com.au</u>			web:		ep AS 4133.4.1-2007-RL26

Rep AS 4133.4.1-2007-RL26

Rocks testing -	Determination	of point load	l strength index													
Including tests o	n; Axial (A), Diam	netral (D) or irre	egular Lump (L) specime	ens			TEST	REPO	RT - S	UMM	ARY OF		YSIS		GO	DER
AS 4133.4.1-200	17															
Test request ID:	TRM20-0614	4 Lab san	nple IDs: 2009304	2 - 2009	3043		Lab rep	ort ref.:		LI	MEL_200	57556			Golder Ass	sociates Pty Ltd
Client:	Hayball Pty Ltd				Proje	ct refere	nce:							MELBOUR	NE GEOTECHNI	CAL LABORATORY
Client address:	Level 1, 250 Flin	ders Lane, Melbo	ourne VIC			Locat	ion:			Haw	thorn				Building 7, E	Botanicca Corporate Park 570 - 588 Swan Street
Project ID:	20145	767-003	Project name:		P	ublic Hou	using Rer	newal Pr	oject 1-7	7 Bills Str	reet, Haw	/thorn				Richmond, Victoria 3121
Exploratory hole reference	e Sample depth (m)	Specimen reference	Sub-specimen:	S ₁	S ₂	S3	S ₄	S ₅	S ₆	\$ ₇	S ₈	S ₉	S ₁₀	Location test co		Laboratory udes specimens
	9.86	GA20-BH05-	Test type:	D										which are not c		
GA20-BH-HAW-0	5 10.00	008	**Compliant test:	Yes										specified in the	test method	
Lab sample ID	LMEL20	20093042	Failure mode	W										Axial	Diametral	Irregular
By	Date:		Failure load [kN]	0.22											0.22	
Sampling	Method:	-	Defect orientation	70°										-	-	-
Moisture content		11.1%	Is [MPa]	0.094											0.094	
Moisture content	type:	Soaked	Is ₍₅₀₎ [MPa]	0.092											0.092	
Density (t/m ³)	As received	Dry	Lithological description		JE brown	and grey	,				1	History:	Test perfor	med on samples submitte	ed to the laboratory. So	oaked for at least 24 hours.
	ND	ND	Littleie Biear acsemption								Clie	ent ref.:				
Exploratory hole reference	e Sample depth (m)	Specimen reference	Sub-specimen:	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	\$ ₇	S ₈	S ₉	S ₁₀	Location test co		Laboratory
	10.27	GA20-BH05-	Test type:	D										which are not c		udes specimens he tolerances
GA20-BH-HAW-0	5 10.39	009	**Compliant test:	Yes										specified in the	,	
Lab sample ID	LMEL20	20093043	Failure mode	W										Axial	Diametral	Irregular
By	Date:		Failure load [kN]	0.15											0.15	
Sampling	Method:	-	Defect orientation	65°										-	-	-
Moisture content		12.2%	Is [MPa]	0.068											0.068	
Moisture content	type:	Soaked	ls ₍₅₀₎ [MPa]	0.066											0.066	
	As received	Dry		CUTCTO	ur haa						1	History:	Test perfor	med on samples submitte	ed to the laboratory. So	aked for at least 24 hours.
Density (t/m ³)	ND	ND	- Lithological description	SILISIO	NE, Drowr	i and grey					Clie	ent ref.:				
Definitions:			L = Lump / Irregular ane, M = Through rock ma	trix, J = /		ı = Not ap nt, W = A	•				idn't Fail				• •	laten gap at failure ince of the method
	t. ref.: 20145767-003_TRM20-0614_PtLd_20093042 - 20093043_Rep-20057556						Specimens prepared by: AHS							Appr	oved signatory	:
	_		 961 - Site:1250 - Melbour				Tests pe	rformed	by:	AHS	12/1	0/20			1	
NATA	Accredited f	or compliance wi	ith ISO/IEC 17025 - Testing			I	Results r	eviewed	by:	ASt	evenson			1	Jor -	
$\mathbf{\vee}$	THIS DOCUME	ENT SHALL ONL	Y BE REPRODUCED IN F	JLL			Da	te repor	ted:	14/	10/2020			Aaron Stever	nson - Senior Te	chnician
Phon	e: +61 (03) 8862 350	00	Fax: +61 (03) 8862	3501	I		E-mail:	<u>m</u>	elbgeolab	@golder.	.com.au			Web:	www.golder.	<u>com.au</u>
This test was carried out in	accordance with AS 4132.4.1	1.2007 Tost results relate	only to the specimens tested.													Rep AS 4133.4.1-2007-RL26

Rep AS 4133.4.1-2007-RL26

Rocks testing -	Determination	of point load	l strength index													
Including tests o	n; Axial (A), Diam	netral (D) or irre	egular Lump (L) specime	ens			TEST	r Repo	RT - S	UMM	ARY OF		YSIS		GOL	DER
AS 4133.4.1-200	7															
Test request ID:	TRM20-0614	4 Lab san	nple IDs: 2009304	8 - 2009	3050		Lab rep	ort ref.:		LI	MEL_200	57557			Golder Ass	ociates Pty Ltd
Client:	Hayball Pty Ltd				Proje	ct refere	nce:							MELBOURI	NE GEOTECHNI	CAL LABORATORY
Client address:	Level 1, 250 Flin	ders Lane, Melbo	ourne VIC			Locat	ion:			Haw	thorn				Building 7, B	otanicca Corporate Park 570 - 588 Swan Street
Project ID:	20145	767-003	Project name:		Ρ	ublic Hou	using Rer	newal Pr	oject 1-7	7 Bills Str	reet, Haw	/thorn				Richmond, Victoria 3121
Exploratory hole reference	Sample depth (m)	Specimen reference	Sub-specimen:	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	\$ ₇	S ₈	S ₉	S ₁₀	Location test co		Laboratory udes specimens
	6.75	GA20-BH06-	Test type:	D										which are not co		
GA20-BH-HAW-0	6 6.92	006	**Compliant test:	Yes										specified in the		
Lab sample ID	LMEL20	20093048	Failure mode	W										Axial	Diametral	Irregular
By	Date:		Failure load [kN]	0.31											0.31	
Sampling	Method:	-	Defect orientation	75°										-	-	-
Moisture content		11.1%	ls [MPa]	0.14											0.14	
Moisture content	type:	Soaked	ls ₍₅₀₎ [MPa]	0.14											0.14	
a (1 (3)	As received	Dry		CUTCTO							i	History:	Test perfor	med on samples submitte	ed to the laboratory. So	aked for at least 24 hours.
Density (t/m ³)	ND	ND	Lithological description	SILISIO	NE, Drown	h and grey					Clie	ent ref.:				
Exploratory hole reference	Sup-specimen' St					S ₃	S 4	S 5	S ₆	S ₇	S ₈	S ₉	S ₁₀	Location test co		Laboratory
	8.08	GA20-BH06-	Test type:	D										Mean values: (udes specimens
GA20-BH-HAW-0		008	**Compliant test:	Yes										specified in the	,	le tolerunces
Lab sample ID	LMEL20	20093050	Failure mode	W										Axial	Diametral	Irregular
Ву	Date:		Failure load [kN]	0.9											0.9	
Sampling	Method:	-	Defect orientation	25°										-	-	-
Moisture content		10.1%	Is [MPa]	0.44											0.44	
Moisture content	type:	Soaked	Is ₍₅₀₎ [MPa]	0.42											0.42	
3	As received	Dry										History:	Test perfor	ned on samples submitte	ed to the laboratory. So	aked for at least 24 hours.
Density (t/m³)	ND	ND	Lithological description	SILTSTO	NE, brown	n and grey	r				Clie	ent ref.:				
Definitions:	Test types: A = Axial, D = Diametral, L = Lump / Irregular s: Failure modes: B = Along bedding plane, M = Through rock matrix, J = A					a = Not ap int, W = A	•				idn't Fail					laten gap at failure nce of the method
	ef.: 20145767-003_TRM20-0614_PtLd_20093048 - 20093050_Rep-20057557						Specimens prepared by: AHS							Appr	oved signatory:	:
\wedge	NATA accredit	tation number: 1	961 - Site:1250 - Melbour	ne			Tests pe	rformed	l by:	AHS	12/1	0/20			1	
NATA	Accredited f	or compliance w	ith ISO/IEC 17025 - Testing			I	Results r	eviewed	l by:	ASt	evenson			1	Jon -	
$\mathbf{\vee}$	THIS DOCUME	ENT SHALL ONL	Y BE REPRODUCED IN F	JLL			Da	te repor	ted:	14/	10/2020			Aaron Steven	son - Senior Te	chnician
Phon	e: +61 (03) 8862 350	00	Fax: +61 (03) 8862	3501	I	E-mail: melbgeolab@golder.com.au							Web:	www.golder.c	<u>com.au</u>	
This seat was as using out in .	accordance with AS 4122.4.1	1.2007 Tost rosults rolato	only to the specimens tested.													Rep AS 4133.4.1-2007-RL26

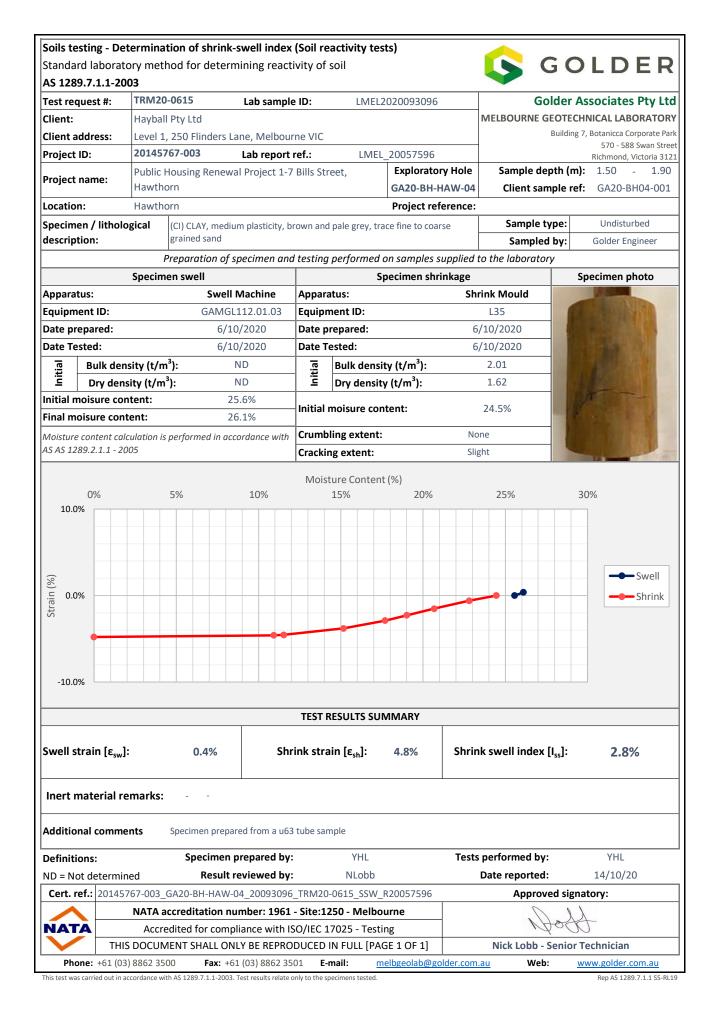
Rep AS 4133.4.1-2007-RL26

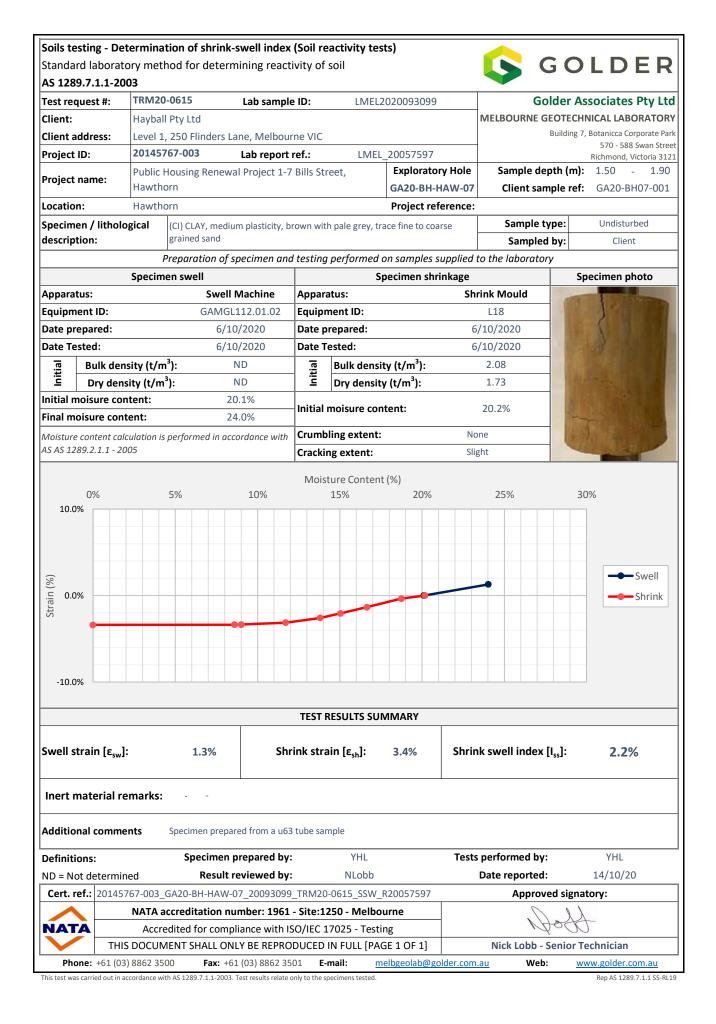
Rocks testing	- Determinatior	n of point load	l strength index													
Including tests	on; Axial (A), Diam	netral (D) or irre	egular Lump (L) specime	ns			TEST	REPO	RT - S	UMM/	ARY OF		YSIS		GOL	DER
AS 4133.4.1-20	07															
Test request ID:	TRM20-061	4 Lab san	nple IDs: 2009307	9 - 2009	3090		Lab rep	ort ref.:		L	MEL_200	57558			Golder Ass	ociates Pty Ltd
Client:	Hayball Pty Ltd				Proje	ct refere	nce:							MELBOUR		CAL LABORATORY
Client address:	Level 1, 250 Flin	iders Lane, Melbo	ourne VIC			Locat	ion:			Haw	thorn				Building 7, B	otanicca Corporate Park 570 - 588 Swan Street
Project ID:	20145	767-003	Project name:		Ρ	ublic Ho	using Rer	newal Pr	oject 1-7	7 Bills Sti	reet, Haw	vthorn				Richmond, Victoria 3121
Exploratory hol reference	e Sample depth (m)	Specimen reference	Sub-specimen:	S ₁	S ₂	S3	S ₄	S ₅	S ₆	\$ ₇	S ₈	S9	S ₁₀	Location test co		Laboratory udes specimens
	3.00	GA20-BH11-	Test type:	D											ompliant with t	
GA20-BH-HAW-	3.13	005	**Compliant test:	Yes										specified in the	test method	
Lab sample ID	LMEL20	20093079	Failure mode	W										Axial	Diametral	Irregular
By	/ Date:		Failure load [kN]	1.2											1.2	
Sampling	Method:	-	Defect orientation	70°										-	-	-
Moisture conten	t	8.8%	Is [MPa]	0.51											0.51	
Moisture conten	t type:	Soaked	ls ₍₅₀₎ [MPa]	0.5											0.5	
Density (t/m ³)	As received	Dry	Lithological description			and grey						History:	Test perfor	ned on samples submitt	ed to the laboratory. So	aked for at least 24 hours.
Density (t/m)	ND ND										Clie	ent ref.:				
Exploratory hol reference	e Sample Specimen Sub-specimen: S ₁					S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀	Location test co		Laboratory
	9.62	GA20-BH12-	Test type:	D											Calculation excl ompliant with ti	udes specimens he tolerances
GA20-BH-HAW-	9.74	006	**Compliant test:	Yes										specified in the	,	
Lab sample ID	LMEL20	20093090	Failure mode	W										Axial	Diametral	Irregular
By	/ Date:		Failure load [kN]	0.67											0.67	
Sampling	Method:	-	Defect orientation	50°										-	-	-
Moisture conten	t l	3.5%	Is [MPa]	0.27											0.27	
Moisture conten	t type:	As rcvd.	ls ₍₅₀₎ [MPa]	0.27											0.27	
3.	As received	Dry								1		History:	Test perfor	med on samples submitt	ed to the laboratory. So	aked for at least 24 hours.
Density (t/m³)	ND	ND	Lithological description	SILISIO	NE, grey a	and brown	l				Clie	ent ref.:				
Definitions:	Test types: A = Axial, D = Diametral, L = Lump / Irregular Failure modes: B = Along bedding plane, M = Through rock matrix, J = A						oplicable Along a p) idn't Fail					laten gap at failure ince of the method
	ef.: 20145767-003_TRM20-0614_PtLd_20093079 - 20093090_Rep-20057558						Specimens prepared by: AHS							Appr	oved signatory:	
	_		961 - Site:1250 - Melbouri				Tests pe	rformed	l by:	AHS	12/1	0/20		••	1	
NATA	Accredited f	or compliance w	ith ISO/IEC 17025 - Testing				Results r	eviewed	l by:	ASt	evenson			1	Jor -	
	THIS DOCUME	ENT SHALL ONL	Y BE REPRODUCED IN FU	JLL			Da	te repor	ted:	14/	/10/2020			Aaron Stever	nson - Senior Te	chnician
Pho	ne: +61 (03) 8862 350	00	Fax: +61 (03) 8862	3501		E-mail: melbgeolab@golder.com.au						1	Web:	www.golder.c	<u>com.au</u>	
This test was carried out i	accordance with AC 4122.4	1.2007 Tost rosults rolato	only to the specimens tested.													Rep AS 4133.4.1-2007-RL26

Rep AS 4133.4.1-2007-RL26

Rocks testing	- Determination	of point load	l strength index													
Including tests	on; Axial (A), Diam	netral (D) or irre	egular Lump (L) specime	ens			TEST	r Repo	RT - S	UMM/	ARY OF		YSIS		GOI	DER
AS 4133.4.1-20	07															
Test request ID:	TRM20-0614	4 Lab san	nple IDs: 20093094	4 - 2009	3088		Lab rep	ort ref.:		L	MEL_200	57559			Golder Ass	ociates Pty Ltd
Client:	Hayball Pty Ltd				Proje	ct refere	nce:							MELBOUR	NE GEOTECHNI	CAL LABORATORY
Client address:	Level 1, 250 Flin	ders Lane, Melbo	ourne VIC			Locat	ion:			Haw	thorn				Building 7, E	otanicca Corporate Park 570 - 588 Swan Street
Project ID:	20145	767-003	Project name:		Ρ	ublic Hou	using Rer	newal Pr	oject 1-7	7 Bills Sti	reet, Haw	vthorn				Richmond, Victoria 3121
Exploratory ho reference	e Sample depth (m)	Specimen reference	Sub-specimen:	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	\$ ₇	S ₈	S9	S ₁₀	Location test co		Laboratory udes specimens
	14.79	GA20-BH12-	Test type:	D										which are not c		
GA20-BH-HAW-	12 14.91	011	**Compliant test:	Yes										specified in the		
Lab sample ID	LMEL20	20093094	Failure mode	W										Axial	Diametral	Irregular
By	y Date:		Failure load [kN]	0.54											0.54	
Sampling	Method:	-	Defect orientation	45°										-	-	-
Moisture conten	t	10.5%	ls [MPa]	0.27											0.27	
Moisture conten	t type:	As rcvd.	ls ₍₅₀₎ [MPa]	0.25											0.25	
a (1 (3)	As received	Dry										History:	Test perform	ned on samples submitt	ed to the laboratory. So	aked for at least 24 hours.
Density (t/m ³)	ND ND						l				Clie	ent ref.:				
Exploratory ho reference	e Sample depth (m)	Sub-specimen: S					S 4	S 5	S ₆	\$ ₇	S ₈	S ₉	S ₁₀	Location test co		Laboratory
	16.90	GA20-BH12-	Test type:	D										Mean values: which are not c		udes specimens
GA20-BH-HAW-		014	**Compliant test:	Yes										specified in the	,	ne torerunces
Lab sample ID	LMEL20	20093088	Failure mode	W										Axial	Diametral	Irregular
B	/ Date:		Failure load [kN]	0.55											0.55	
Sampling	Method:	-	Defect orientation	50°										-	-	-
Moisture conten	t	8.4%	Is [MPa]	0.24											0.24	
Moisture conten	t type:	As rcvd.	ls ₍₅₀₎ [MPa]	0.23											0.23	
	As received	Dry								1		History:	Test perform	ned on samples submitt	ed to the laboratory. So	aked for at least 24 hours.
Density (t/m ³)	ND	ND	Lithological description	SILTSTOM	NE, grey a	and pale g	rey				Clie	ent ref.:				
Definitions:	Test types: A = Axial, D = Diametral, L = Lump / Irregular Failure modes: B = Along bedding plane, M = Through rock matrix, J = A					a = Not ap	•								•	laten gap at failure Ince of the method
	ef.: 20145767-003 TRM20-0614 PtLd 20093094 - 20093088 Rep-20057559						cimens p			s, DF = D					oved signatory:	
Cert. rei 2014	NATA accreditation number: 1961 - Site:1250 - Melbourne					-	Tests pe	-	-	AHS		.0/20		Аррі		•
NATA			ith ISO/IEC 17025 - Testing				Results r		-		evenson			1	A	
			Y BE REPRODUCED IN FU					te repor			/10/2020			Aaron Stever	nson - Senior Te	chnician
Pho	ne: +61 (03) 8862 350		Fax: +61 (03) 8862				E-mail:	•		 @golder			L	Web:	www.golder.o	
			only to the specimens tested.							C Attack						Rep AS 4133.4.1-2007-RL26

Rep AS 4133.4.1-2007-RL26

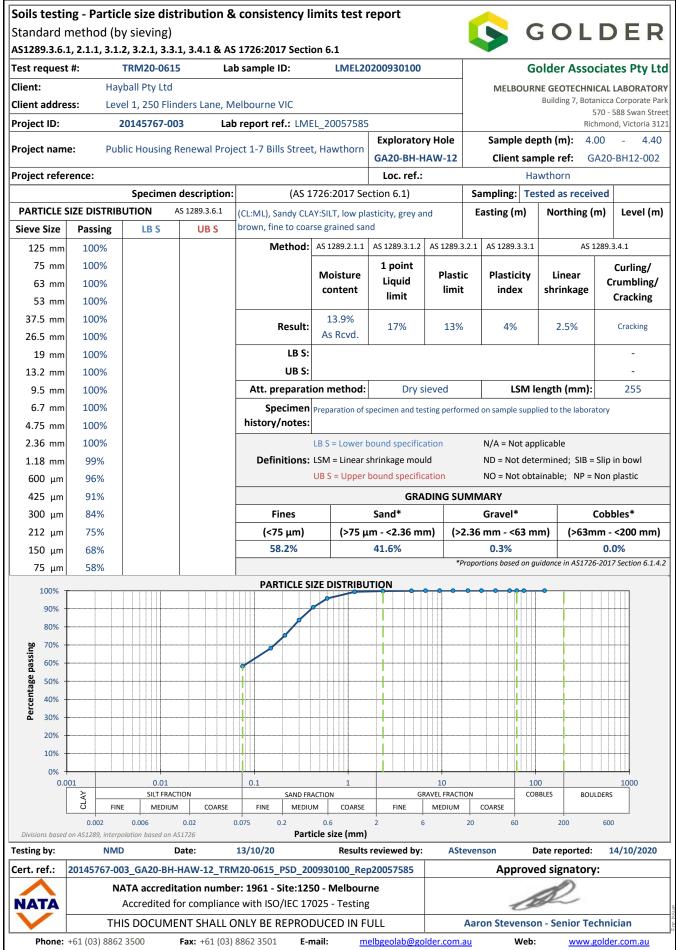

est request ID: Client: Client address: Project ID:	TRM20-0614	l ah sai					
client address:		Lab Sal	nple IDs:	2009300-20093024		Golder Ass	ociates Pty I
	Hayball Pty Ltd				MELBOURN	NE GEOTECHNIC	
Project ID:	Level 1, 250 Flind	ers Lane, Melb	ourne VIC			Building 7, Bo	otanicca Corporate 570 - 588 Swan Si
	20145767-003	Lab re	port ref.:	LMEL_20057551		R	Richmond, Victoria
Project name:	Public Housing Re	enewal Project	1-7 Bills Street, Ha	awthorn Client Ref	cation:	Hayball Pty	Ltd
		TES	T REPORT - SU	MMARY OF ANAL			
Lab sample ID	Exploratory hole ref.	Sample depth (m)	Specimen reference	Specimen / lithologic	al description		Moistu conter
LMEL202009300	GA20-BH-HAW-	5.74	GA20-BH01-004	SILTSTONE, brown			6.8%
	01	5.93		,			Soake
LMEL202009302	GA20-BH-HAW-	8.35	GA20-BH01-007	SILTSTONE, brown			11.3%
	01	8.46	0.120 2.102 007				Soake
LMEL202009304	GA20-BH-HAW-	10.70	GA20-BH01-009	SILTSTONE, brown			8.5%
	01	10.92	GAZO BIIOT 005	SIETSTONE, STOWN			Soake
LMEL202009305	GA20-BH-HAW-	12.40	GA20-BH01-011	SILTSTONE, brown ar	d dark brown		5.8%
LIVILLZUZUU9303	01	12.49	GA20-BH01-011	SILTSTONE, DIOWITAL			Soake
	GA20-BH-HAW-	14.38	CA20 0101 012		h		5.5%
LMEL202009307	01	14.57	GA20-BH01-013	SILTSTONE, grey with	brown		Soake
	GA20-BH-HAW-	3.85					9.8%
LMEL202009308	02	4.00	GA20-BH02-003	SILTSTONE, brown			Soake
	GA20-BH-HAW-	5.80					9.6%
LMEL2020093010	02	6.00	GA20-BH02-005	SILTSTONE, brown			Soake
	GA20-BH-HAW-	7.20					8.5%
LMEL2020093012	02	7.40	GA20-BH02-007	SILTSTONE, brown wi	th grey		Soake
	GA20-BH-HAW-	8.20					7.7%
LMEL2020093013	GA20-ВП-ПАVV- 02	8.35	GA20-BH02-008	SILTSTONE, brown ar	id grey		Soake
		11.25					7.6%
LMEL2020093015	GA20-BH-HAW- 02	11.25	GA20-BH02-011	SILTSTONE, brown ar	id grey		Soake
LMEL2020093016	GA20-BH-HAW- 02	13.28	GA20-BH02-013	SILTSTONE, brown wi	th grey		7.4%
		13.45					Soake
LMEL2020093017	GA20-BH-HAW-	14.60	GA20-BH02-014	SILTSTONE, brown wi	th grey		6.9%
	02	14.70					Soake
LMEL2020093018	GA20-BH-HAW-	4.76	GA20-BH03-002	SILTSTONE, brown			10.8%
	03	4.88					Soake
LMEL2020093020	GA20-BH-HAW-	6.43	GA20-BH03-004	SILTSTONE, brown			9.5%
	03	6.58		,,			Soake
LMEL2020093022	GA20-BH-HAW-	8.23	GA20-BH03-006	SILTSTONE, brown wi	th grey		10.7%
	03	8.35	GA20-BH03-000	SILISTONE, DIOWIT W	ungrey		Soake
LMEL2020093023	GA20-BH-HAW-	9.84		SILTSTONE, brown wi	th grov		12.8%
LIVIEL2020093023	03	9.90	GA20-BH03-007	SILISIONE, DIOWII WI	thgrey		Soake
	GA20-BH-HAW-	10.85					14.9%
LMEL2020093024	03	10.93	-GAZ0-BH03-008	SILTSTONE, grey brow	vn		Soake
Definitions:	·	Specimen	prepared by:	AHS	Test perfor	med by:	NMD/LM
ID = Not determine	ed	Result	reviewed by:	AStevenson	Date re	eported:	14/10/2020
Cert. ref.: 201457	67-003_TRM20-06	514_RMC_2009	300-20093024_R	ep-20057551	Apr	proved signator	y:
\wedge				-		D	
NATA	Accredited fo	r compliance w	ith ISO/IEC 17025	- Testing	1	10 M	
$\mathbf{\vee}$	THIS DOCUMEN	NT SHALL ONL	Y BE REPRODUC	CED IN FULL	Aaron Steve	enson - Senior T	echnician


-	-	od (standard me		ure content of		💽 💽	OLDER
AS 4133.1.1.1	1-200	5					
Fest request ID):	TRM20-0614	Lab sa	mple IDs:	20093025-20093045	Go	Ider Associates Pty Lto
Client:		Hayball Pty Ltd				MELBOURNE GE	OTECHNICAL LABORATOR
Client address:	:	Level 1, 250 Flind	ers Lane, Melb	ourne VIC		1	Building 7, Botanicca Corporate Par
Project ID:		20145767-003	Lab re	port ref.:	LMEL_20057552		570 - 588 Swan Stree Richmond, Victoria 312
			10 1 1	4.7.01		cation: Ha	ayball Pty Ltd
Project name:		Public Housing Re	enewal Project	1-7 Bills Street, Ha	Client Ref	erence:	
			TES	T REPORT - SU	MMARY OF ANAL	YSIS	
Lab sample	ID	Exploratory hole ref.	Sample depth (m)	Specimen reference	Specimen / lithologio	al description	Moisture content
LMEL2020093	0.025	GA20-BH-HAW-	11.18	CA20 BU02 000		and halo brown	13.4%
LIVIELZUZUU93	5025	03	11.28	GA20-BH03-009	SILTSTONE, pale grey	and pale brown	Soaked
1 1 1 2 0 2 0 0 0 2	0000	GA20-BH-HAW-	12.70	CA20 01/02 010			13.6%
LMEL2020093	3026	03	12.83	GA20-BH03-010	SILTSTONE, grey brow	vn	Soaked
		GA20-BH-HAW-	13.87				12.7%
LMEL2020093	3027	03	14.00	GA20-BH03-011	SILTSTONE, grey with	brown	Soaked
		GA20-BH-HAW-	14.12				11.4%
LMEL2020093	3028	03	14.21	GA20-BH03-012	SILTSTONE, brown		Soaked
		GA20-BH-HAW-	15.13				13.7%
LMEL2020093	3029	03	15.22	GA20-BH03-013	SILTSTONE, grey brow	vn	Soaked
		GA20-BH-HAW-	4.60				10.6%
LMEL2020093	3030	04	4.70	GA20-BH04-005	SILTSTONE, brown w	th grey	Soaked
			5.73				6.9%
LMEL2020093	3031	GA20-BH-HAW- 04	5.85	GA20-BH04-006	SILTSTONE, brown		Soaked
			7.71				6.3%
LMEL2020093	3033	GA20-BH-HAW- 04		GA20-BH04-008	SILTSTONE, brown w	th grey	
			7.90				Soaked
LMEL2020093	3034	GA20-BH-HAW- 04	8.63	GA20-BH04-009	SILTSTONE, grey brow	vn	6.3%
		04	8.82				Soaked
LMEL2020093	3036	GA20-BH-HAW-	11.78	GA20-BH04-012	SILTSTONE, grey brow	vn	6.7%
		04	12.00				Soaked
LMEL2020093	3037	GA20-BH-HAW-	13.40	GA20-BH04-014	SILTSTONE, grey		6.6%
		04	13.60				Soaked
LMEL2020093	3038	GA20-BH-HAW-	15.23	GA20-BH04-016	SILTSTONE, brown gr	ev	6.2%
		04	15.35			- /	Soaked
LMEL2020093	3039	GA20-BH-HAW-	5.92	GA20-BH05-005	SILTSTONE, pale grey	brown	5.7%
		05	6.00	0.120 2.100 000	o, pare 8.07		Soaked
LMEL2020093	8040	GA20-BH-HAW-	7.10	GA20-BH05-006	SILTSTONE, brown		4.4%
	040	05	7.15	GA20-BH05-000	SILISTONE, DIOWIT		Soaked
LMEL2020093	80/11	GA20-BH-HAW-	8.28		SILTSTONE, pale brow	vn and brown	11.2%
	1+04	05	8.38		siciarone, pale prov		Soaked
	044	GA20-BH-HAW-	11.04	GA20 BUIDE 010		brown	10.1%
LMEL2020093	0044	05	11.18	GAZU-BH05-010	SILTSTONE, pale grey	DIOWN	Soaked
		GA20-BH-HAW-	12.00				9.4%
LMEL2020093	5045	05	12.10		SILTSTONE, grey and	prown	Soaked
Definitions:			Specimen	prepared by:	AHS	Test performed l	by: NMD/LM
ND = Not deter	rmined	b	Result	reviewed by:	AStevenson	Date reporte	ed: 14/10/2020
Cert. ref.: 20	14576	57-003_TRM20-06	14_RMC_2009		Rep-20057552	Approved	d signatory:
				 1961 - Site:1250 -	-		D
NATA		Accredited fo	r compliance w	vith ISO/IEC 17025	- Testing	6	al a
\mathbf{V}		THIS DOCUMEN	IT SHALL ONI	Y BE REPRODUC	ED IN FULL	Aaron Stevenson	- Senior Technician
Phone: +6	1 (03)	8862 3500 F	ax: +61 (03) 886	52 3501 E-mail:	melbgeolab@gol	der.com.au Web:	www.golder.com.au

Oven drying meth		thod)			GOI	LDER
AS 4133.1.1.1-200	-					
est request ID:	TRM20-0614	Lab sa	mple IDs:	20093047-20093071		sociates Pty Lto
lient:	Hayball Pty Ltd				MELBOURNE GEOTECHNI	ICAL LABORATOR Botanicca Corporate Par
lient address:	Level 1, 250 Flind					570 - 588 Swan Stre
Project ID:	20145767-003	Lab re	port ref.:	LMEL_20057553		Richmond, Victoria 312
Project name:	Public Housing Re	enewal Project	1-7 Bills Street, Ha		ation: Hayball Pty rence:	/ Ltd
		TES	T REPORT - SU	MMARY OF ANALY	SIS	
Lab sample ID	Exploratory hole ref.	Sample depth (m)	Specimen reference	Specimen / lithologica	l description	Moisture content
LMEL2020093047	GA20-BH-HAW-	14.88	GA20-BH05-013	SILTSTONE, grey and b	rown	7.8%
LIVIEL2020093047	05	15.00	GA20-BI105-015	SILTSTONE, grey and b	TOWIT	Soaked
LMEL2020093049	GA20-BH-HAW-	7.80	CA30 DU0C 007			9.9%
LIVIEL2020093049	06	7.90	GA20-BH06-007	SILTSTONE, brown		Soaked
	GA20-BH-HAW-	9.08				6.5%
LMEL2020093051	06	9.24	-GA20-BH06-009	SILTSTONE, brown		Soaked
	GA20-BH-HAW-	12.23				4.4%
LMEL2020093053	06	12.36	-GA20-BH06-012	SILTSTONE, brown and	pale brown	Soaked
	GA20-BH-HAW-	13.20				5.0%
LMEL2020093054	06	13.32	GA20-BH06-013	SILTSTONE, brown		Soaked
	GA20-BH-HAW-	5.71				9.7%
LMEL2020093055	07	5.90	-GA20-BH07-004	SILTSTONE, brown		Soaked
	GA20-BH-HAW-	7.76				7.4%
LMEL2020093057	07	7.92	-GA20-BH07-006	SILTSTONE, brown and	red brown	Soaked
	GA20-BH-HAW-	10.11				10.8%
LMEL2020093059	07	10.25	GA20-BH07-009	SILTSTONE, brown		Soaked
	GA20-BH-HAW-	11.25				7.2%
LMEL2020093060	GA20-ВП-ПАW- 07	11.40	GA20-BH07-010	SILTSTONE, brown		Soaked
		12.05				8.8%
LMEL2020093061	GA20-BH-HAW- 07	12.03	GA20-BH07-011	SILTSTONE, brown		Soaked
		13.14				4.2%
LMEL2020093062	GA20-BH-HAW- 07	13.14	GA20-BH07-012	SILTSTONE, grey and b	rown	4.270 Soaked
		13.54				4.5%
LMEL2020093063	GA20-BH-HAW- 07	14.50	GA20-BH07-014	SILTSTONE, grey		
						Soaked
LMEL2020093065	GA20-BH-HAW- 08	9.13	GA20-BH08-007	SILTSTONE, brown		6.8%
		9.21				Soaked
LMEL2020093067	GA20-BH-HAW-	11.72	GA20-BH08-009	SILTSTONE, brown		5.7%
	08	11.84				Soaked
LMEL2020093069	GA20-BH-HAW-	11.90	GA20-BH09-006	SILTSTONE, grey and b	rown	5.3%
	09	11.95				Soaked
LMEL2020093070	GA20-BH-HAW-	12.20	GA20-BH09-007	SILTSTONE, brown and	dark brown	8.0%
	09	12.26				Soaked
LMEL2020093071	GA20-BH-HAW-	13.10	GA20-BH09-008	SILTSTONE, brown and	dark brown	5.5%
	09	13.18				Soaked
Definitions:		•	prepared by:	AHS	Test performed by:	NMD/LM
ND = Not determine			reviewed by:	AStevenson	Date reported:	14/10/2020
Cert. ref.: 201457					Approved signato	ry:
\sim			1961 - Site:1250 - I		D	
		-	vith ISO/IEC 17025	-	0	
	THIS DOCUMEN 8862 3500 F	II SHALL ONL	Y BE REPRODUC	ED IN FULL	Aaron Stevenson - Senior	Technician

Rep AS 4133.1.1.1-2005-RL19

Client: Hayball Client address: Level 1, Project ID: 2014 Project name: Public H Lab sample ID Explo hole LMEL2020093072 GA20-B 11 LMEL2020093074 GA20-B 11 LMEL2020093075 GA20-B 11 LMEL2020093076 GA20-B 11 LMEL2020093078 GA20-B 11 LMEL2020093078 GA20-B 11 LMEL2020093081 GA20-B 11 LMEL2020093081 GA20-B 11 LMEL2020093082 GA20-B 11 LMEL2020093082 GA20-B 11 LMEL2020093084 GA20-B 11 LMEL2020093085 GA20-B 11 LMEL2020093085 GA20-B 11 LMEL2020093086 GA20-B 11 LMEL2020093087 GA20-B 11 LMEL2020093087 GA20-B 11 LMEL2020093087 GA20-B 11 LMEL2020093087 GA20-B 11 LMEL2020093088 GA20-B 11 LMEL2020093088 GA20-B 11 LMEL2020093088 GA20-B 11 LMEL2020093088 GA20-B 11	45767-003 Housing Re pratory e ref. 3H-HAW- 09 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 11	ers Lane, Melb Lab re enewal Project	port ref.: 1-7 Bills Street, Hi T REPORT - SU Specimen reference GA20-BH09-009 GA20-BH10-005 GA20-BH10-007 GA20-BH10-009	Client Referen MMARY OF ANALYSIS Specimen / lithological de SILTSTONE, brown and gro SILTSTONE, brown and gro SILTSTONE, brown grey SILTSTONE, grey with brow SILTSTONE, grey	Gamelbourne Gamelb		I tes Pty Lt Aborator
Client:HayballClient:Level 1,Project ID:2014Project name:Public HLab sample IDExplo holeLMEL2020093072GA20-B CLMEL2020093074GA20-B CLMEL2020093075GA20-B CLMEL2020093076GA20-B CLMEL2020093077GA20-B CLMEL2020093076GA20-B CLMEL2020093077GA20-B CLMEL2020093078GA20-B CLMEL2020093078GA20-B CLMEL2020093080GA20-B CLMEL2020093081GA20-B CLMEL2020093082GA20-B CLMEL2020093084GA20-B CLMEL2020093085GA20-B CLMEL2020093086GA20-B CLMEL2020093087GA20-B CLMEL2020093088GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CLMEL2020093089GA20-B CL	I Pty Ltd , 250 Flind 45767-003 Housing Re pratory e ref. 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 11 3H-HAW- 11	ers Lane, Melb Lab re enewal Project TES Sample depth (m) 15.77 15.87 7.71 7.93 9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80	ourne VIC port ref.: 1-7 Bills Street, Ha T REPORT - SU Specimen reference GA20-BH09-009 GA20-BH10-005 GA20-BH10-007 GA20-BH10-009 GA20-BH10-001	LMEL_20057554 awthorn Client Referen MMARY OF ANALYSIS Specimen / lithological de SILTSTONE, brown and gro SILTSTONE, brown grey SILTSTONE, grey with brow SILTSTONE, grey	MELBOURNE G	EOTECHNICAL L Building 7, Botanic 570 Richmo	ABORATOF ca Corporate P: - 588 Swan Strr ond, Victoria 31 Moisture content 8.8% Soaked 7.8% Soaked 7.3% Soaked 7.5% Soaked
Client address: Level 1, Project ID: 2014 Project ID: Public H Lab sample ID Exploin hole LMEL2020093072 GA20-B LMEL2020093074 GA20-B LMEL2020093075 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093081 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093084 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093088	, 250 Flind 45767-003 Housing Re pratory e ref. 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 11 3H-HAW- 11	Lab re enewal Project TES Sample depth (m) 15.77 15.87 7.71 7.93 9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80	port ref.: 1-7 Bills Street, Hi T REPORT - SU Specimen reference GA20-BH09-009 GA20-BH10-005 GA20-BH10-007 GA20-BH10-007 GA20-BH10-007 GA20-BH10-001	Location Client Referent MMARY OF ANALYSIS Specimen / lithological de SILTSTONE, brown and group SILTSTONE, brown and group SILTSTONE, brown grey SILTSTONE, grey with brow SILTSTONE, grey	e: escription ey	Building 7, Botanic 570 Richmo	A Corporate P - 588 Swan Stripond, Victoria 3: Moistur content 8.8% Soaked 7.8% Soaked 7.3% Soaked 7.5% Soaked
Project ID: 2014 Project name: Public H Lab sample ID Explo LMEL2020093072 GA20-B LMEL2020093074 GA20-B LMEL2020093075 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093078 GA20-B LMEL2020093080 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B I GA20-B	45767-003 Housing Re pratory e ref. 3H-HAW- 09 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 11	Lab re enewal Project TES Sample depth (m) 15.77 15.87 7.71 7.93 9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80	port ref.: 1-7 Bills Street, Hi T REPORT - SU Specimen reference GA20-BH09-009 GA20-BH10-005 GA20-BH10-007 GA20-BH10-007 GA20-BH10-007 GA20-BH10-001	Location Client Referent MMARY OF ANALYSIS Specimen / lithological de SILTSTONE, brown and group SILTSTONE, brown and group SILTSTONE, brown grey SILTSTONE, grey with brow SILTSTONE, grey	escription	570 Richmo	- 588 Swan Str ond, Victoria 3: Moistur content 8.8% Soaked 7.8% Soaked 7.3% Soaked 7.5% Soaked
Project name: Public H Lab sample ID Exploine LMEL2020093072 GA20-B LMEL2020093074 GA20-B LMEL2020093075 GA20-B LMEL2020093076 GA20-B LMEL2020093075 GA20-B LMEL2020093076 GA20-B LMEL2020093078 GA20-B LMEL2020093078 GA20-B LMEL2020093080 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093084 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093089 GA20-B LMEL2020093089 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093089 GA20-B LMEL2020093089 GA20-B LMEL2020093088 GA20-B	Housing Reserved as a second s	enewal Project TES Sample depth (m) 15.77 15.87 7.71 7.93 9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80	1-7 Bills Street, Hi T REPORT - SU Specimen reference GA20-BH09-009 GA20-BH10-005 GA20-BH10-007 GA20-BH10-009 GA20-BH10-001	Location Client Referent MMARY OF ANALYSIS Specimen / lithological de SILTSTONE, brown and group SILTSTONE, brown and group SILTSTONE, brown grey SILTSTONE, grey with brow SILTSTONE, grey	escription		Moistur content 8.8% Soaked 7.8% Soaked 7.3% Soaked 7.5% Soaked
Lab sample ID Exploine Lab sample ID 6A20-B LMEL2020093072 GA20-B LMEL2020093074 GA20-B LMEL2020093075 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093078 GA20-B LMEL2020093078 GA20-B LMEL2020093080 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093084 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093089 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B <t< td=""><td>pratory e ref. 3H-HAW- 09 3H-HAW- 10 3H-HAW- 11</td><td>TES Sample depth (m) 15.77 15.87 7.71 7.93 9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80</td><td>T REPORT - SU Specimen reference GA20-BH09-009 GA20-BH10-005 GA20-BH10-007 GA20-BH10-007 GA20-BH10-009 GA20-BH10-009 GA20-BH10-009</td><td>Client Referen MMARY OF ANALYSIS Specimen / lithological de SILTSTONE, brown and gro SILTSTONE, brown and gro SILTSTONE, brown grey SILTSTONE, grey with brow SILTSTONE, grey</td><td>escription</td><td>Hayball Pty Ltd</td><td>Content 8.8% Soaked 7.8% Soaked 7.3% Soaked 7.5% Soaked</td></t<>	pratory e ref. 3H-HAW- 09 3H-HAW- 10 3H-HAW- 11	TES Sample depth (m) 15.77 15.87 7.71 7.93 9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80	T REPORT - SU Specimen reference GA20-BH09-009 GA20-BH10-005 GA20-BH10-007 GA20-BH10-007 GA20-BH10-009 GA20-BH10-009 GA20-BH10-009	Client Referen MMARY OF ANALYSIS Specimen / lithological de SILTSTONE, brown and gro SILTSTONE, brown and gro SILTSTONE, brown grey SILTSTONE, grey with brow SILTSTONE, grey	escription	Hayball Pty Ltd	Content 8.8% Soaked 7.8% Soaked 7.3% Soaked 7.5% Soaked
Lab sample ID hole LMEL2020093072 GA20-B LMEL2020093074 GA20-B LMEL2020093075 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093080 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093084 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B LMEL2020093089 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B L	e ref. 3 BH-HAW- 09 BH-HAW- 10 BH-HAW- 10 BH-HAW- 10 BH-HAW- 11 BH-HAW- 11 BH-HAW- 11 BH-HAW- 11	Sample depth (m) 15.77 15.87 7.71 7.93 9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80	Specimen reference GA20-BH09-009 GA20-BH10-005 GA20-BH10-007 GA20-BH10-007 GA20-BH10-009 GA20-BH10-009	Specimen / lithological de SILTSTONE, brown and gro SILTSTONE, brown and gro SILTSTONE, brown grey SILTSTONE, grey with brow SILTSTONE, grey	escription 2y 2y		Content 8.8% Soaked 7.8% Soaked 7.3% Soaked 7.5% Soaked
Lab sample ID hole LMEL2020093072 GA20-B LMEL2020093074 GA20-B LMEL2020093075 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093080 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093084 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B LMEL2020093089 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B LMEL2020093088 GA20-B L	e ref. 3 BH-HAW- 09 BH-HAW- 10 BH-HAW- 10 BH-HAW- 10 BH-HAW- 11 BH-HAW- 11 BH-HAW- 11 BH-HAW- 11	depth (m) 15.77 15.87 7.71 7.93 9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80	reference GA20-BH09-009 GA20-BH10-005 GA20-BH10-007 GA20-BH10-007 GA20-BH10-009 GA20-BH10-009 GA20-BH10-011	SILTSTONE, brown and gro SILTSTONE, brown and gro SILTSTONE, brown grey SILTSTONE, grey with brow SILTSTONE, grey	2y		Content 8.8% Soaked 7.8% Soaked 7.3% Soaked 7.5% Soaked
LMEL2020093072 GA20-B 1 LMEL2020093074 GA20-B 1 LMEL2020093075 GA20-B 1 LMEL2020093076 GA20-B 1 LMEL2020093076 GA20-B 1 LMEL2020093078 GA20-B 1 LMEL2020093080 GA20-B 1 LMEL2020093081 GA20-B 1 LMEL2020093082 GA20-B 1 LMEL2020093084 GA20-B 1 LMEL2020093085 GA20-B 1 LMEL2020093086 GA20-B 1 LMEL2020093087 GA20-B 1 LMEL2020093088 GA20-B 1	09	15.87 7.71 7.93 9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80	GA20-BH10-005 GA20-BH10-007 GA20-BH10-009 GA20-BH10-011	SILTSTONE, brown and gro SILTSTONE, brown grey SILTSTONE, grey with brow SILTSTONE, grey	2y		Soaked 7.8% Soaked 7.3% Soaked 7.5% Soaked
LMEL2020093074 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093076 GA20-B LMEL2020093078 GA20-B LMEL2020093080 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093084 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B <t< td=""><td>10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 11 3H-HAW- 11 4HAW- 11 4HAW-</td><td>7.93 9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80</td><td>GA20-BH10-007 GA20-BH10-009 GA20-BH10-011</td><td>SILTSTONE, brown grey SILTSTONE, grey with brow</td><td></td><td></td><td>Soaked 7.3% Soaked 7.5% Soaked</td></t<>	10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 10 3H-HAW- 11 3H-HAW- 11 4HAW- 11 4HAW-	7.93 9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80	GA20-BH10-007 GA20-BH10-009 GA20-BH10-011	SILTSTONE, brown grey SILTSTONE, grey with brow			Soaked 7.3% Soaked 7.5% Soaked
Implement Implement LMEL2020093075 GA20-B LMEL2020093076 GA20-B LMEL2020093078 GA20-B LMEL2020093078 GA20-B LMEL2020093080 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093082 GA20-B LMEL2020093084 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B LMEL2020093089 GA20-B LMEL2020093089 <td< td=""><td>BH-HAW- 10 BH-HAW- 10 BH-HAW- 10 BH-HAW- 11 BH-HAW- 11 BH-HAW- 11 BH-HAW- 11 BH-HAW- 11 BH-HAW-</td><td>9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80</td><td>GA20-BH10-007 GA20-BH10-009 GA20-BH10-011</td><td>SILTSTONE, brown grey SILTSTONE, grey with brow</td><td></td><td></td><td>7.3% Soaked 7.5% Soaked</td></td<>	BH-HAW- 10 BH-HAW- 10 BH-HAW- 10 BH-HAW- 11 BH-HAW- 11 BH-HAW- 11 BH-HAW- 11 BH-HAW- 11 BH-HAW-	9.00 9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80	GA20-BH10-007 GA20-BH10-009 GA20-BH10-011	SILTSTONE, brown grey SILTSTONE, grey with brow			7.3% Soaked 7.5% Soaked
LMEL2020093075 A LMEL2020093076 GA20-B LMEL2020093078 GA20-B LMEL2020093078 GA20-B LMEL2020093080 GA20-B LMEL2020093080 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093084 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B LMEL2020093089 GA20-B	10 3H-HAW- 10 4HAW- 10 3H-HAW- 10 3H-HAW- 11 3H-HAW- 11 4HAW- 11 4HAW-	9.25 11.66 11.86 13.78 14.00 4.16 4.27 5.80	GA20-BH10-009	SILTSTONE, grey with brow	vn		Soaked 7.5% Soaked
Implement Implement LMEL2020093076 GA20-B LMEL2020093078 GA20-B LMEL2020093080 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093084 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B LMEL2020093089 GA20-B LMEL2020093089 GA20-B LMEL2020093089 GA20-B	BH-HAW- 10 BH-HAW- 10 BH-HAW- 11 BH-HAW- 11 BH-HAW- 11 BH-HAW- 11 BH-HAW-	11.66 11.86 13.78 14.00 4.16 4.27 5.80	GA20-BH10-009	SILTSTONE, grey with brow	vn		7.5% Soaked
LMEL2020093076 1 LMEL2020093078 GA20-B LMEL2020093080 GA20-B LMEL2020093080 GA20-B LMEL2020093080 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093084 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B LMEL2020093087 GA20-B 1 GA20-B <tr< td=""><td>10</td><td>11.86 13.78 14.00 4.16 4.27 5.80</td><td>-GA20-BH10-011</td><td>SILTSTONE, grey</td><td>vn</td><td></td><td>Soaked</td></tr<>	10	11.86 13.78 14.00 4.16 4.27 5.80	-GA20-BH10-011	SILTSTONE, grey	vn		Soaked
LMEL2020093078 1 LMEL2020093080 GA20-B LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093082 GA20-B LMEL2020093082 GA20-B LMEL2020093084 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B LMEL2020093087 GA20-B LMEL2020093088 GA20-B LMEL2020093087 GA20-B 1 GA20-B	10 3H-HAW- 11 3H-HAW- 11	13.78 14.00 4.16 4.27 5.80					6.6%
LMEL2020093080 1 LMEL2020093081 GA20-B LMEL2020093082 GA20-B LMEL2020093084 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093085 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093086 GA20-B LMEL2020093087 GA20-B LMEL2020093089 GA20-B LMEL2020093089 GA20-B LMEL2020093089 GA20-B LMEL2020093089 GA20-B	11 3H-HAW- 11	4.16 4.27 5.80	-GA20-BH11-006				Soaked
LMEL2020093081 GA20-B 1 LMEL2020093082 GA20-B 1 LMEL2020093084 GA20-B 1 LMEL2020093085 GA20-B 1 LMEL2020093086 GA20-B 1 LMEL2020093086 GA20-B 1 LMEL2020093086 GA20-B 1 LMEL2020093087 GA20-B 1 LMEL2020093088 GA20-B 1 LMEL2020093089 GA20-B 1	3H-HAW- 11	5.80		SILISIONE, DIOWII			10.0%
LMEL2020093082 GA20-B 1 LMEL2020093084 GA20-B 1 LMEL2020093085 GA20-B 1 LMEL2020093085 GA20-B 1 LMEL2020093086 GA20-B 1 LMEL2020093087 GA20-B 1 LMEL2020093087 GA20-B 1 LMEL2020093089 GA20-B 1			GA20-BH11-007	SILTSTONE, brown and gro	27		Soaked 11.7% Soaked
LMEL2020093084 GA20-B 1 LMEL2020093085 GA20-B 1 LMEL2020093086 GA20-B 1 LMEL2020093087 GA20-B 1 LMEL2020093089 GA20-B 1	3H-HAW- 11	6.65	GA20-BH11-008	SILTSTONE, brown and gro	≥γ		20.6%
LMEL2020093085 GA20-B 1 LMEL2020093086 GA20-B 1 LMEL2020093087 GA20-B 1 LMEL2020093089 GA20-B 1 LMEL2020093089 GA20-B	3H-HAW-	6.84 8.05	GA20-BH11-010	SILTSTONE, brown			Soaked 9.6%
LMEL2020093086 GA20-B 1 LMEL2020093087 GA20-B 1 LMEL2020093089 GA20-B 1 GA20-B	11 3H-HAW-	8.16 9.90	CA20 DU11 011				Soaked 12.9%
LMEL2020093086 1 LMEL2020093087 GA20-B 1 LMEL2020093089 GA20-B 1 GA20-B	11	10.00	GA20-BH11-011	SILTSTONE, brown			Soaked
LMEL2020093087 GA20-B 1 LMEL2020093089 GA20-B 1 GA20-B	3H-HAW- 11	11.80 11.91	-GA20-BH11-013	SILTSTONE, brown and gro	зy		8.8% Soaked
LMEL2020093089 GA20-B 1 GA20-B	3H-HAW-	13.59		SILTSTONE, brown and gro	2V		7.2%
LMEL2020093089 1 GA20-B	11	13.70					Soaked
GA20-B	3H-HAW- 12	8.13 8.21	GA20-BH12-005	SILTSTONE, brown and gro	гу		7.1% Soaked
1	3H-HAW- 12	10.28 10.39	GA20-BH12-007	SILTSTONE, brown and gro	гу		6.9% Soaked
LMEL2020093092	3H-HAW- 12	12.76 12.90	GA20-BH12-009	SILTSTONE, brown			8.5% Soaked
LMEL2020093093 GA20-B	3H-HAW- 12	13.89		SILTSTONE, brown			9.1% Soaked
			_				
Definitions:		Snecimen	prepared by:	AHS	Test performed	d by: NM	1D/LM
ND = Not determined		•	reviewed by:	AStevenson	Date report	•	0/2020
Cert. ref.: 20145767-003_1	TRM20-06		•	l	•	ed signatory:	-,
NATA Accr	accredita	tion number: 1 r compliance w	1961 - Site:1250 - vith ISO/IEC 17025	Melbourne - Testing		P	
THIS D		IT SHALL ONL	Y BE REPRODUC	ED IN FULL	Aaron Stevenso	on - Senior Techr	nician



Soil testing - Determination of permeability of a saturated specimen Constant head method using a flexible wall permeameter

AS 1289.6.7.3-	2016	·			OLDER
Test request #:	TRM20-0615	Lab sample ID: LM	EL20200930100	Gold	er Associates Pty Lto
Client:	Hayball Pty Ltd			MELBOURNE G	EOTECHNICAL LABORATOR
Client address:	Level 1, 250 Flinder	rs Lane, Melbourne VIC		Bui	Iding 7, Botanicca Corporate Par
Project ID:	20145767-003 Pro	oject reference:		-	570 - 588 Swan Stree Richmond, Victoria 312
	Public Housing Ren	ewal Project 1-7 Bills Street,	Exporatory Hole	Sample depth	
Project name:	Hawthorn				e ref: GA20-BH12-002
Project reference	:		GA20-BH-HAW-12	Location	
Specimen		Y:SILT, low plasticity, grey and bro	own fine to coarse	Phase / Locale	
description:	grained sand	noner, for plasticity, grey and sit		Sample type	
-	Specimen b	efore testing		Compaction D	
Height [H] (mm)		63.3	Method		-
Diameter [D] (mn	n)	63.3	Material retain	l ned on 19mm sieve	(g)· -
D]:[H]	,	1:1	Optimum Moi		-
Mass (g)		437.6	·	Density (t/m ³):	
Moisture Conten	• •	13.9%	·	re content to OMC:	
Dry Density (t/m ⁸		1.93	Ŭ	sity relative to MD	
Assumed Porosity	-	27.3%	Laboratory Mc	-	-
Assumed Pore Vo		54.6	Laboratory NC		
	est photo	Post-test photo		Permeability tes	t details
FIE-to		Post-test photo	Permeant used	-	Distilled water
1	and the second	Minh Martin marth	Method of sat		Back pressure saturation
	Contraction of the			tial saturation:	97.7%
	ALL DE LE LE		Saturation B va		98%
			Confining Pres		1550
	ALL DECK	A CONTRACTOR OF THE OWNER	Inlet Pressure		1530
			250 Contraction		
		S PARTE STATES	Outlet Pressur		1490
		1. 7 4 10 1 1 1 1 1 1	Mean effective		50
			Hydraulic Head		20
	and the second		Moisture cont	ent alter test:	13.8%
the test of		Contraction and a subscript	Permeabili	ty: (m/s)	2E-09
80.0					
70.0					
60.0					
50.0					
E 40.0					
40.0 B					
(Im) 40.0 am 30.0 20.0					
					Δ Base volume
10.0					Δ Back volume
0.0	5.0	10.0 15.0	20.0 25.0	30.0	25.0 40.0
0.0	5.0	Elapsed Tin		30.0	35.0 40.0
Notes: Specin	nen prepared from a u63	tube sample, sampled by client			
Definitions:	Sp	ecimen Prepared by:	LM	Test Performed by	: LM
ND = Not Determ	ined Re	sults Reviewed by:	NLobb	Date Reported	: 14/10/20
Cert. Ref.: 20145	5767-003_GA20-BH-HA	W-12_200930100_TRM20-0615_I	PERM_R20057601	Approve	d Signatory:
		on number: 1961 - Site:1250 - N	_	2	1)
NATA		compliance with ISO/IEC 17025 -		NAS	22
		•	-	Niele Leich C	en ten Tenbutatan
🗸 т	HIS DOCUMENT SHAL	LL ONLY BE REPRODUCED IN FUL		NICK LODD - S	enior Technician

This test was carried out in accordance with AS 1289.6.7.3-2016

These tests were carried out in accordance with the Australian standards identified in this certificate Test results relate only to the specimens tested.

Rep AS1289.3.6.1 - RL44

Soils testing - Re	eport of classi	fication te	st results						
Atterberg limits ar	nd linear shrinka	ige					🕒 G (DLD	E R
Multiple AS test n	nethods								
Test request ID:	TRM20-0615	i Lal	b sample ID:	2009309	5-20093099		Golde	r Associat	es Pty Ltd
Client:	Hayball Pty Ltd					М	ELBOURNE GEOT	ECHNICAL LA	BORATORY
Client address:	Level 1, 250 Flin	ders Lane, M	lelbourne VIC				Build	ling 7, Botanicca	
Project ID:	20145767-00	3 Lab	report ref.:	LMEL_	20057584				588 Swan Stree d, Victoria 3121
	Public Housing F	Renewal Proj	ect 1-7 Bills Stree	et,	Le	ocation:	На	wthorn	
Project name:	Hawthorn				Project re	ference:			
Soil description	on: (AS 1726:2017	Section 6.1)	Test procedure:	AS 1289.3.1.2-2009	AS 1289.3.2.1-2009	AS 1289.3.3.1-2009	AS 1289.3.4.1-2008	AS 1289.2.1.1-2005	AS 1141.12-2015
	Exploratory	Sample	Specimen	Liquid	Plastic	Plasticity	Linear	Moisture	Finer than
Lab sample ID	hole reference	depth (m)	reference	limit ^{1pt.}	limit	index	shrinkage	content	75µm
	GA20-BH-HAW-	2.90	GA20-BH01-				7.5 % 250mm mould	13.8 %	
LMEL2020093095	01	3.25	002	32%	14%	18%	Cracking / Curling	As rcvd.	-
(CL), CLAY, low plasticit	ty, pale grey and or	ange brown				Prep.:	0.0		Oven dried
	GA20-BH-HAW-	1.50	GA20-BH04-			-	11.5 % 250mm	24.5 %	
LMEL2020093096	04	1.90	001	41%	15%	26%	Curling	As rcvd.	-
(CI), CLAY, medium pla	sticity brown and r					Prep.:	J		Oven dried
		2.50	-				10.0 % ^{250mm}	-	
LMEL2020093097	GA20-BH-HAW- 05	2.95	GA20-BH05- 002	52%	19%	33%	mouid	18.2 %	-
(CH), CLAY, high plastic				ad		Prep.:	Curling Dry sieved	As rcvd.	Oven dried
(CH), CLAT, high plastic	1	-	-			Fiep.	,		Oven uneu
LMEL2020093098	GA20-BH-HAW-	1.50	GA20-BH06-	55%	22%	33%	10.5 % mould	23.1 %	-
(06	1.95	001				Curling	As rcvd.	
(CH), CLAY, high plastic	city, orange and pal	e grey, trace fi	ne to coarse graine	ed sand, trace f	ine gravel	Prep.:	25.4	History:	Oven dried
LMEL2020093099	GA20-BH-HAW-	1.50	GA20-BH07-	50%	16%	34%	7.5 % ^{254mm} mould	18.8 %	-
	07	1.90	001				Cracking / Curling	As rcvd.	
(CI), CLAY, medium pla	sticity, brown with	pale grey, trac	e fine to coarse gra	ained sand		Prep.:	Dry sieved	History:	Oven dried
						Prep.:		History:	
						Prep.:	1	History:	
			I	11		Prep.:	:	History:	
						Prep.:	 	History:	
		<u> </u>				Prep.:		History:	
Definitions:				Not	e: Specimen		rom samples subr		laboratory
ND = Not determine	. al				eropeennen		nen prepared by:		NMD
						-	st performed by:		ND
NO = Not obtainable	2					Te	• •		
NP = Non plastic							Date of testing:	-	.0/20
SIB = Slipping in bow						Res	sult reviewed by:		enson
n/a = not applicable							Date reported:		/2020
Cert. ref.: 201457							Approved si	gnatory:	
			er: 1961 - Site:12!		-		0	2	
NATA		-	e with ISO/IEC 17				De		
	THIS DOCUME	NT SHALL C	NLY BE REPRO	DUCED IN FL	JLL	Aaı	ron Stevenson - S	enior Techni	cian
Phone: +61 (03)	8862 3500	Fax: +61 (03)	8862 3501 E-r	nail: me	elbgeolab@go	lder.com.au	Web:	www.golde	r.com.au

APPENDIX E

Important Information

The document ("Report") to which this page is attached and which this page forms a part of, has been issued by Golder Associates Pty Ltd ("Golder") subject to the important limitations and other qualifications set out below.

This Report constitutes or is part of services ("Services") provided by Golder to its client ("Client") under and subject to a contract between Golder and its Client ("Contract"). The contents of this page are not intended to and do not alter Golder's obligations (including any limits on those obligations) to its Client under the Contract.

This Report is provided for use solely by Golder's Client and persons acting on the Client's behalf, such as its professional advisers. Golder is responsible only to its Client for this Report. Golder has no responsibility to any other person who relies or makes decisions based upon this Report or who makes any other use of this Report. Golder accepts no responsibility for any loss or damage suffered by any person other than its Client as a result of any reliance upon any part of this Report, decisions made based upon this Report or any other use of it.

This Report has been prepared in the context of the circumstances and purposes referred to in, or derived from, the Contract and Golder accepts no responsibility for use of the Report, in whole or in part, in any other context or circumstance or for any other purpose.

The scope of Golder's Services and the period of time they relate to are determined by the Contract and are subject to restrictions and limitations set out in the Contract. If a service or other work is not expressly referred to in this Report, do not assume that it has been provided or performed. If a matter is not addressed in this Report, do not assume that any determination has been made by Golder in regards to it.

At any location relevant to the Services conditions may exist which were not detected by Golder, in particular due to the specific scope of the investigation Golder has been engaged to undertake. Conditions can only be verified at the exact location of any tests undertaken. Variations in conditions may occur between tested locations and there may be conditions which have not been revealed by the investigation and which have not therefore been taken into account in this Report.

Golder accepts no responsibility for and makes no representation as to the accuracy or completeness of the information provided to it by or on behalf of the Client or sourced from any third party. Golder has assumed that such information is correct unless otherwise stated and no responsibility is accepted by Golder for incomplete or inaccurate data supplied by its Client or any other person for whom Golder is not responsible. Golder has not taken account of matters that may have existed when the Report was prepared but which were only later disclosed to Golder.

Having regard to the matters referred to in the previous paragraphs on this page in particular, carrying out the Services has allowed Golder to form no more than an opinion as to the actual conditions at any relevant location. That opinion is necessarily constrained by the extent of the information collected by Golder or otherwise made available to Golder. Further, the passage of time may affect the accuracy, applicability or usefulness of the opinions, assessments or other information in this Report. This Report is based upon the information and other circumstances that existed and were known to Golder when the Services were performed and this Report was prepared. Golder has not considered the effect of any possible future developments including physical changes to any relevant location or changes to any laws or regulations relevant to such location.

Where permitted by the Contract, Golder may have retained subconsultants affiliated with Golder to provide some or all of the Services. However, it is Golder which remains solely responsible for the Services and there is no legal recourse against any of Golder's affiliated companies or the employees, officers or directors of any of them.

By date, or revision, the Report supersedes any prior report or other document issued by Golder dealing with any matter that is addressed in the Report.

Any uncertainty as to the extent to which this Report can be used or relied upon in any respect should be referred to Golder for clarification

golder.com